Application of the method of finite differences to the calculation of shallow shells

Применение метода конечных разностей к расчету пологих оболочек
Цитировать:
Application of the method of finite differences to the calculation of shallow shells // Universum: технические науки : электрон. научн. журн. Hamzaev I. [и др.]. 2021. 3(84). URL: https://7universum.com/ru/tech/archive/item/11453 (дата обращения: 18.11.2024).
Прочитать статью:

 

DOI: 10.32743/UniTech.2021.84.3-4.71-76

 

АННОТАЦИЯ

Приведено методика расчета пологих оболочек по методу конечных разностей. В качество примера пологих оболочек рассмотрен расчет оболочек эллиптического параболоида с шарнирно – неподвижным опиранием находящихся под действием равномерно распределенной нагрузкой.

ABSTRACT

A method for calculating hollow shells using the finite difference method is presented. As an example of shallow shells, I considered the calculation of shells of an elliptic paraboloid with a pivotally motionless support under the action of a uniformly distributed load.

 

Ключевые слова: оболочки, пологая оболочка, конечные разности, прогиб, функция напряжений, кривизна, толщина оболочки, усилия, моменты, кинематическая условия, статические условия, граничные условия.

Keywords: shell, shallow shell, finite differences, deflection, stress function, curvature, shell thickness, forces, moments, kinematic conditions, static conditions, boundary conditions.

 

Consider thin shallow shells, in which the ratio of the boom of the lift in the center f to the smaller size and in plan is compiled (Fig. 1a)

                                                                        (1)

 and the ratio of the shell thickness h to the smallest radius of curvature

                                                                    (2)

In view of the shell slope (2), the geometry of its surface is identified with the geometry on the plane of their projection and the curvilinear coordinate system of the surface is replaced by the coordinate system on the plane.

In a rectangular Cartesian coordinate system, the resolving equilibrium equations of a shallow shell in mixed form can be written in the form [1,2].

                                                    (3)

Where - прогиб; - stress function

The first of equation (3) is an equilibrium equation, the second is a condition for compatibility of deformations.

The differential operator has the form

                                                (4)

Where

                                              (5)

The bending curvature in the direction of the x and y axes and the torsion curvature of the coordinate lines, respectively.

For a surface in the form of an elliptical paraboloid ; ;  the same with ;   и  forces and moments through deflection similarly to expressions for plates in finite differences for the “i” square grid.[1,3]

 

(6)

Where

           (7)

and without moment forces, stress functions φ are expressed and coincide with expressions for a plane problem.

                                     (8)

Here - γ is the bulk density

We introduce the notation:

   

                           (9)

Where - dimensionless deflection, - dimensionless stress function,  - dimensionless swelling, ,,- dimensionless curvature

Then the cutting equations (3) for the point i of the rectangular grid will take the form [1,3]

  (10)

Expressions for effort. We introduce the following notation

               (11)

Where , , - dimensionless moments; , - dimensionless shear forces; - dimensionless longitudinal forces, - dimensionless tangential force. Then, for the point i of the rectangular grid, these expressions take the form:[1,2,3]

Normal and tangential stresses will be[2,3]

                                                        (13)

Border conditions.

Hinged - fixed mount.

Let st be the edge of the shell, then for point i we can write three kinematic conditions

w=0; u=0; v=0                                                                        (14)

and one static condition

My=0                                                                              (15)

Conditions (14) are equivalent to the following two conditions

                                                             (16)

                                       (17)

From the condition that the contour is equal to zero curvature in the plane of the contour. Ny – along the contour st unknown then φ is equal to zero. Thus, at the point i wi=0 and the values of φi are unknown. Therefore, in this case, of the two resolving equations in circuit i, write only one strain compatibility equation, and for point m, two equations. Then the unknown edge values are, wn, φn and φv.

The additional equations for finding are (15), (16) and (17) which in finite differences for point i has the form.

                                                                    (18)

                                     (19)

(20)

For cases when the edge uv parallel to the y axis has a pivotally fixed fastening, then we obtain the following dependencies

                                                                  (21)

                                   (22)

     (23)

We calculate a shell of the type of an elliptic paraboloid with a square plan (а=в) and with a pivotally motionless support under the action of a uniformly distributed load.

Mid-surface equation

                                                  (24)

Where from   similarly  

Source data.

f=10; v=0,17; select the quadrant grid in steps  (fig. 2). Wherein     

due to symmetry, the equation can be limited for point I. (10)

From conditions (18), (19) and (20)

For point I, we write two equations (10)

Similarly, we write equations for other points, and having solved the resulting system of equations, we find the values  and , and, using formulas (12), bending and membrane forces. So, for example, for point 6 we find by formulas (12).

Values obtained  close to analytical solution [2].

 

List of references:

  1. А.А. Назаров. Основы теории и методе расчета пологих оболочек М. 1966г. -302 с. 
  2. В.З. Власов. избранные труды т. 1 М. издательство АН.СССР.1962г
  3. П.М. Варвак. Д.В. Вайнберг. Метод сеток в приложения к расчету пластин и оболочек Справочник проектировщика II. разд. 15 под ред. А.А. Уманского. М. Стройиздат 1973г.
  4. В.В. Новожилов Теория тонких оболочек. Л., 1962г,
  5. Маткаримов Ш.А., Ахмедов А.У. Расчет асфальтобетонных дорожных покрытий на упругом основании // Universum:технические науки: эл. научн. журн. 2020. 12(81). URL: https://7universum.com/ru/tech/archive/item/11058 (дата выпуска: 07.01.2021)
  6. С.П. Тимошенко, С. Войновский - Кригер. Пластинки и оболочки. М. Физматгиз. 1963г.
  7. Б.Н. Жемечкин. Теория упругости. М. издательство литературы по строительству и архитектуре 1957г. -256с.
  8. Выбор вязкости и определение используемых смазочных материалов (масла) при расчете механических передач Тиллавалдиев Б. Т., Гаппаров К. Г., Зияев А. Т.; Международный научно-образовательный электронный журнал «ОБРАЗОВАНИЕ И НАУКА В XXI ВЕКЕ». Выпуск №7 (октябрь, 2020); https://www.mpcareer.ru/oinv21veke
  9. И.Х. Хамзаев, Э.С. Умаров. Применение метода конечных разностей к расчету балок-стенок - ФарПИ ИТЖ НТЖ ФерПИ (STJ FerPI), 2018.Том 22. №4 48-52.
  10. Х.И.Хамзаев, Э.С.Умаров Применение метода конечных разностей к расчету пологих оболочек - Tadqiqot.uz ISSN 2181-9696 Doi Journal 10.26739/2181-9696. “TECHNICAL SCIENCES” №1 (2020) TOSHKENT-2020 11-17 с.
  11. Опытное определение расхода газа, подаваемое на пылеочищающую установку с контактным элементом, работающим в режиме спутникового вихря // Universum: Технические науки : электрон. научн. журн. Эргашев Н.А. [и др.]. 2019. № 12(69). URL: http://7universum.com/ru/tech/archive/item/8582
  12. Абдуллаев З.Д. Зависимость интенсивности просеивания частиц сыпучего материала от скорости их перемещения и геометрических параметров // Universum: технические науки : электрон. научн. журн. 2021. 1(82). URL: https://7universum.com/ru/tech/archive/item/11179 (дата обращения: 17.03.2021).
  13. Hamzaev, I. H., Umarov, E. S., & Muminov, J. A. Calculation of the bearing capacity of steel beams, taking into account the development of plastic deformations in the operational stage.
  14. Umarov, E. S. On the effect of axial displacements on the strength of frames Tadqiqot.uz ISSN 2181-9696 Doi Journal 10.26739/2181-9696
  15. E.S. Umarov, I.H. Hamzaev, J.A. Mo'minov. Tadqiqot.uz ISSN 2181-9696 Doi Journal 10.26739/2181-9696. https://tadqiqot.uz/wp-content/uploads/2020/04/texnika-2020-02.pdf
Информация об авторах

Candidate of technical sciences, Associate Professor Ferghana Polytechnic Institute, The Republic of Uzbekistan, Ferghana

канд. техн. наук, доцент, Ферганского политехнического института, Республики Узбекистан, г.Фергана

Assistant Ferghana Polytechnic Institute, The Republic of Uzbekistan, Ferghana

ассистент, Ферганского политехнического института Республики Узбекистан, г.Фергана

Senior Lecturer at Fergana Polytechnic Institute, The Republic of Uzbekistan, Ferghana

старший преподаватель Ферганского политехнического института, Республика Узбекистан, г.Фергана

Teacher, Ferghana Polytechnic Institute, city Ferghana, The Republic of Uzbekistan, Ferghana

преподаватель Ферганского политехнического института, Республика Узбекистан, г.Фергана

Журнал зарегистрирован Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор), регистрационный номер ЭЛ №ФС77-54434 от 17.06.2013
Учредитель журнала - ООО «МЦНО»
Главный редактор - Ахметов Сайранбек Махсутович.
Top