Some thermodynamic aspects of the reduction of magnetite in the presence of carbon

Некоторые термодинамические аспекты восстановления магнетита в присутствии углерода
Цитировать:
Some thermodynamic aspects of the reduction of magnetite in the presence of carbon // Universum: технические науки : электрон. научн. журн. Khojiev S.T. [и др.]. 2021. 3(84). URL: https://7universum.com/ru/tech/archive/item/11347 (дата обращения: 26.04.2024).
Прочитать статью:

 

ABSTRACT

The article presents a study of the thermodynamic parameters of the process of reduction of the mineral magnetite in the presence of carbon and their relationship. Accordingly, as the temperature rises, the likelihood of the magnetite reduction reaction increases. When the temperature reaches 928 K, the reaction system reaches absolute equilibrium, and from 929 K the reduction reaction shifts to the right according to the Le-Chatelier principle. When the temperature reaches 1273 K, the equilibrium constant of the chemical reaction reaches its maximum value.

АННОТАЦИЯ

В статье представлено исследование термодинамических параметров процесса восстановления минерала магнетита в присутствии углерода и их взаимосвязи. Соответственно, с повышением температуры увеличивается вероятность реакции восстановления магнетита. Когда температура достигает 928 К, реакционная система достигает абсолютного равновесия, а от 929 К реакция восстановления смещается вправо по принципу Ле-Шателье. Когда температура достигает 1273 К, константа равновесия химической реакции достигает максимального значения.

 

Keywords: magnetite, reduction, carbon, carbothermy, wustite, thermodynamics, enthalpy, entropy, Gibbs energy, equilibrium constant, temperature.

Ключевые слова: магнетит, восстановление, углерод, карботермия, вюстит, термодинамика, энтальпия, энтропия, энергия Гиббса, константа равновесия, температура.

 

When carbon is used as a reducing agent to recover metals from metal oxides, such reactions are called carbothermic reactions in metallurgy. Carbothermic reactions can occur gradually depending on the amount of oxygen in the metal oxide [1]. For example, in the first stage of the recovery of high oxides of iron - hematite with the help of carbon, magnetite is formed, in the second stage - wustite, and finally in the third stage - metallic iron. Carbothermic reactions usually take place at temperatures of several hundred degrees Celsius [2]. These processes are used to separate the elemental (pure) forms of many metals. The carbothermic method cannot be used for oxides of some active metals, such as alkali and alkaline-earth metals [3]. This is because in order for carbothermic reactions to take place, the oxygen content of the oxide-containing metal must be less than that of the reducing carbon. For example, oxides of sodium, potassium, and calcium cannot be reduced with carbon. Because these metals are more susceptible to oxygen than carbon. Therefore, such chemical reactions do not occur in practice. The ability of metals to participate in carbothermic reactions can be understood in more detail through Ellingham diagrams [4].

The second stage in the recovery of iron oxides is the recovery of the mineral Fe3O4 (magnetite) [5]. This reduction reaction is of practical importance, as it reduces the amount of magnetite in the converter slag. The magnetite mineral is reduced to the mineral FeO (wustite):

Fe3O4 + C = 3FeO + CO↑                                                                   (1)

The temperature-dependent formula for the change in Gibbs energy for chemical reaction 1 is written as follows [6]:

∆Greac = 211,61 – 0,22801T                                                                 (2)

Table 1 presents the thermodynamic values calculated from formula (2).

Table 1

Results of thermodynamic analysis of carbothermic reduction reaction of magnetite

T

∆ H

∆ S

∆ G

lnKe

Ke

1

373

211,61

0,22801

126,562

-40,8314

1,8E-18

2

423

211,61

0,22801

115,162

-32,7617

5,9E-15

3

473

211,61

0,22801

103,761

-26,3981

3,4E-12

4

523

211,61

0,22801

92,361

-21,2513

5,9E-10

5

573

211,61

0,22801

80,960

-17,0026

4,1E-08

6

623

211,61

0,22801

69,560

-13,4360

1,5E-06

7

673

211,61

0,22801

58,159

-10,3993

3E-05

8

723

211,61

0,22801

46,759

-7,7826

0,00042

9

773

211,61

0,22801

35,358

-5,5044

0,00407

10

823

211,61

0,22801

23,958

-3,5030

0,03011

11

873

211,61

0,22801

12,557

-1,7309

0,17712

12

923

211,61

0,22801

1,157

-0,1508

0,86001

13

973

211,61

0,22801

-10,244

1,2669

3,54985

14

1023

211,61

0,22801

-21,644

2,5460

12,7565

15

1073

211,61

0,22801

-33,045

3,7060

40,6893

16

1123

211,61

0,22801

-44,445

4,7626

117,05

17

1173

211,61

0,22801

-55,846

5,7292

307,711

18

1223

211,61

0,22801

-67,246

6,6167

747,463

19

1273

211,61

0,22801

-78,647

7,4345

1693,4

20

1323

211,61

0,22801

-90,047

8,1905

3606,46

21

1373

211,61

0,22801

-101,448

8,8914

7269,28

22

1423

211,61

0,22801

-112,848

9,5431

13947,9

23

1473

211,61

0,22801

-124,249

10,1505

25604,4

24

1523

211,61

0,22801

-135,649

10,7181

45164,4

25

1573

211,61

0,22801

-147,050

11,2495

76844

 

Of all the carbothermic reactions, the most energy-intensive is the reduction reaction of magnetite [7]. The reason why magnetite recovers more energy than hematite is that magnetite is a combination of two oxides (FeO ∙ Fe2O3). Given the formation of wustite during the reduction of magnetite with carbon, it follows that wustite in magnetite does not participate in the carbothermic reaction, only the hematite part is involved in the reaction [8]. Then the question naturally arises: why the same energy is not used in the recovery of magnetite and hematite? In response, we can say that the only reason for the absorption of a lot of energy in the recovery of magnetite is the formation of a chemical bond between the two oxides of iron [9]. It takes extra energy to break that bond. In general, large amounts of external energy are required to recover magnetite due to the energy required to break the chemical bonds in the hematite and to break the chemical bond between the hematite and the wurtzite [10]. The high liquefaction temperature of magnetite can also be explained by this situation [11,12].    

 

Figure 1. The change in Gibbs energy during the carbothermic reduction of magnetite

 

As can be seen from Figure 1, no chemical reaction takes place at a temperature of 928 K, and the Gibbs energy of the system has a positive value. When the temperature reaches 928 K, the system reaches absolute equilibrium (∆Greac = 0), i.e. the rate of forward and reverse reactions is equal (Ke = 1). At a temperature of 929 K, a chemical reaction begins at the contact boundaries of the magnetite and carbon systems [13,14,15].  

At 930 K, the chemical equilibrium constant in the reduction reaction of magnetite is greater than 1, but the reaction is very slow [16]. This is because one of the most important conditions for a chemical reaction to take place is the separation of the products of the reaction from the reaction surface. In hydrometallurgical processes, various mixing methods are used to overcome this problem [17]. For example, mechanical (blade) mixing, pneumatic (air) mixing, and so on. However, in pyrometallurgical processing, it is more difficult to mix the reaction system, especially when it is almost impossible to mechanically mix high-temperature liquid converter slag. Because metal flakes melt in liquid slag at high temperatures [18,19]. Therefore, gas bubbling method is used in the processing of high temperature liquid slag. This means that in the method we are considering, carbon reacts with all the iron and copper oxides to form CO2 gas and begins to rise [20].

 

Figure 2. Temperature-dependent changes in the equilibrium constant of magnetite during carbothermic reduction

 

The CO2 gases released from several reaction surfaces combine to form larger bubbles, which pneumatically stir the liquid bath as they rise. In this case, the FeO formed after the recovery of the magnetite leaves the reaction surface due to the bubbling of the liquid bath, opening the surface of the next layer of magnetite and the continuation of the recovery reaction.

According to the production practice, the reduction of magnetite with solid carbon occurs in the temperature range of 820 - 1000 oC (1093 - 1273 K) (Fig. 2). In this temperature range, the equilibrium constant of the recovery process ranged from 100 to 1693.      

 

References:

  1. Ellingham, H.J.T. (1944), J. Soc. Chem. Ind. (London) T. 63: 125.
  2. Khojiev Sh.T. Pyrometallurgical Processing of Copper Slags into the Metallurgical Ladle // International Journal of Advanced Research in Science, Engineering and Technology. Vol. 6, Issue 2, February 2019. pp. 8094 – 8099.
  3. Khojiev Sh.T., Tolibova X.G‘., Abdikarimova F.O‘., Rakhmataliev Sh.A. Solubility of copper and cobalt in iron-silicate slags // Современные технологии: Актуальные вопросы, достижения и инновации: сборник статей XXVII Международной научно-практической конференции. – Пенза: МЦНС “Наука и Просвещение”. – 2019. С. 65 – 67. .
  4. Абдикаримова Ф.У., Хожиев Ш.T. Способ переработки медных шлаков // “Fan va Texnika taraqqiyotida intellektual yoshlarning o‘rni” nomli Respublika ilmiy-texnikaviy anjumanining ma’ruzalar to‘plami / Toshkent: ToshDTU, aprel, 2019. 535 – 357 b.  
  5. Сафаров А.Х., Хожиев Ш.T. Разработка безотходной технологии производства золота // Международный научный журнал “Молодой Учёный”, № 17 (255), часть I. -Казань: издательства «Молодой ученый», 2019. С. 47 – 49.
  6. Khojiev Sh. T., Safarov A. X., Mashokirov A. A., Imomberdiyev S. F., Khusanov S. U., Umarov B. O. New method for recycling of copper melting slags// Международный научный журнал “Молодой Учёный”, № 18 (256), часть II. -Казань: издательства «Молодой ученый», 2019. С. 133 – 135. 
  7. Abjalova H.T., Hojiyev Sh.T. Metallning shlak bilan isrofi va uni kamaytirish yo‘llari // akademik T.M. Mirkomilovning 80 yilligiga bag‘ishlangan universitet miqyosidagi talaba va yosh olimlarning ilmiy tadqiqot ishlarida “Innovatsion g‘oyalar va texnologiyalar” mavzusidagi ilmiy-amaliy anjumanining ma’ruzalar to‘plami / Toshkent: ToshDTU, 17-18- may, 2019. 95 – 97 b. 
  8. Юсупходжаев А.А., Хожиев Ш.Т., Хайруллаев П.Х., Муталибханов М.С. Исследование влияния температуры и содержания меди на плотность медеплавильных шлаков // Monografia Pokonferencyjna “Science, Research, Development”: Technics and technology. – Warszawa: “Diamond trading tour”. – 2019. С. 6 – 9. 
  9. А.А. Юсупходжаев, Ш.Т. Хожиев. Пирометаллургия: конспект лекций для магистров. -Ташкент: ТашГТУ, 2019 г. – 62 с.
  10. А.А. Юсупходжаев, Ш.Т. Хожиев. Пирометаллургия: методическое руководства к практическим занятиям для магистров. -Ташкент: ТашГТУ, 2019 г. – 46 с.
  11. A.A. Yusupkhodjaev, Sh.T. Khojiev, B.T. Berdiyarov, D.O. Yavkochiva, J.B. Ismailov. Technology of Processing Slags of Copper Production using Local Secondary Technogenic Formations// International Journal of Innovative Technology and Exploring Engineering, Volume-9, Issue-1, November 2019. P. 5461 – 5472. 
  12. Хожиев Ш.Т., Нусратуллаев Х.К., Акрамов У.А., Ирсалиева Д.Б., Мирсаотов С.У. Минералогический анализ шлаков медеплавильного завода Алмалыкского горно-металлургического комбината// “Студенческий вестник”: научный журнал, № 43(93). Часть 5. Москва, Изд. «Интернаука», Ноябрь 2019. С. 62 – 64.
  13. Хожиев Ш.Т., Зайниддинов Н.Ш., Мирсаотов С.У., Ирсалиева Д.Б., Мамараимов С.С., Муносибов Ш. Термогравитационное обеднение шлаков медного производства // “Студенческий вестник”: научный журнал, № 43(93). Часть 5. Москва, Изд. «Интернаука», Ноябрь 2019. С. 65 – 68.  
  14. Хожиев Ш.Т., Эркинов А.А., Абжалова Х.Т., Мирсаотов С.У., Мамараимов С.С. Использование металлургических техногенных отходов в качестве сырье // “Студенческий вестник”: научный журнал, № 43(93). Часть 5. Москва, Изд. «Интернаука», Ноябрь 2019. С. 69 – 71.
  15. Sh.T. Khojiev, A.A. Yusupkhodjaev, D.Y. Aribjonova, G.B. Beknazarova, D.N. Abdullaev. Depletion of Slag from Almalyk Copper Plant with Aluminum Containing Waste // International Journal of Innovative Technology and Exploring Engineering, Volume-9, Issue-2, December 2019. P. 2831 – 2837. DOI: 10.35940/ijitee.B7200.129219
  16. Hojiyev Sh.T., Norqobilov Y.F., Raxmataliyev Sh.A., Suyunova M.N. Yosh metallurg [Matn]: savol-javoblar, qiziqarli ma’lumotlar va metallar ishlab chiqarish texnologik jarayonlari. – Toshkent: “Tafakkur” nashriyoti, 2019 . - 140 b. ISBN 978-9943-24-273-9
  17. Yusupxodjayev A.A., Mirzajonova S.B., Hojiyev Sh.T. Pirometallurgiya jarayonlari nazariyasi [Matn]: darslik. – Toshkent: “Tafakkur” nashriyoti, 2020. – 300 b. ISBN 978-9943-24-295-1
  18. Хожиев Ш.Т., Исмаилов Ж.Б., Очилдиев К.Т., Шукуров М.С., Махмудова О.О. Анализ возможных химических реакций при обеднении медных шлаков // “Студенческий вестник”: научный журнал, № 6(104). Часть 4. Москва, Изд. «Интернаука», Февраль 2020 г. С. 38 – 41.
  19. Khojiev Sh.T., Abjalova H.T., Erkinov A.A., Nurmatov M.N. Study of methods for preventing copper loss with slags // “Студенческий вестник”: научный журнал, № 6(104). Часть 4. Москва, Изд. «Интернаука», Февраль 2020 г. С. 71 – 74.
  20. Khojiev Shokhrukh, Berdiyarov Bakhriddin, Mirsaotov Suxrob. Reduction of Copper and Iron Oxide Mixture with Local Reducing Gases. Acta of Turin Polytechnic University in Tashkent, 2020, Vol.10, Iss.4. P. 7-17.
Информация об авторах

Associate professor of “Metallurgy” department, PhD, Tashkent State Technical University, Republic of Uzbekistan, Tashkent

и.о. доц. кафедры Металлургия, PhD, Ташкентский государственный технический университет, Республика Узбекистан, г. Ташкент

Assistant of department Metallurgy, Tashkent State Technical University, Uzbekistan, Tashkent

ассистент Ташкентского государственного технического университета, Узбекистан, г. Ташкент

DSc., Associate Professor, Head of the “Technological Metals and Clusters” Department, Ministry of Mining and Geology of the Republic of Uzbekistan, Republic of Uzbekistan, Tashkent

д-р техн. наук, доцент, заведующий отделом «Технологические металлы и кластеры» Министерства горного дела и геологии Республики Узбекистан, Республика Узбекистан, г. Ташкент

Assistant professor of department Metallurgy, PhD, Tashkent State Technical University, Uzbekistan, Tashkent

доцент кафедры Металлургии, PhD, Ташкентский государственный технический университет, Узбекистан, г. Ташкент

Graduate student of department Metallurgy, PhD, Tashkent State Technical University, Uzbekistan, Tashkent

магистрант, Ташкентский государственный технический университет, Узбекистан, г. Ташкент

Журнал зарегистрирован Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор), регистрационный номер ЭЛ №ФС77-54434 от 17.06.2013
Учредитель журнала - ООО «МЦНО»
Главный редактор - Ахметов Сайранбек Махсутович.
Top