д-р техн. наук., проф. Наманганского инженерно-технологического института, кафедра «Химическая технология», Узбекистан, г. Наманган
Технология получения новых комплексных фосфорных удобрений
АННОТАЦИЯ
В статье приведены результаты синтеза комплексных фосфорных удобрений на основе карбонатсодержащих фосфоритов месторождения Кызылкум с использованием нитрата аммония и хлорида калия. Показана возможность получения новых фосфорно-калиевых удобрений при различных соотношениях компонентов.
ABSTRACT
The results of the synthesis of complex phosphorus fertilizers based on carbonate-containing phosphorites of the Kyzylkum deposit using ammonium nitrate and potassium chloride are presented. The possibility of obtaining new phosphorus-potassium fertilizers at various ratios of components is shown.
Ключевые слова: фосфорит, азотная кислота, нитрат аммония, хлорид калия, фосфоконцентрат.
Keywords: phosphorite, nitric acid, ammonium nitrate, potassium chloride, phosphoconcentrate.
Введение. В Республике Узбекистан основные залежи фосфоритов, являющихся основным фосфатным сырьём для получения фосфорсодержащих минеральных удобрений, расположены на месторождении Центральных Кызылкумов [1]. Апатитовый концентрат Хибинского месторождения является наилучшим фосфатным сырьём и только для него разработана технология переработки в любые фосфорсодержащие удобрения с высокими технико-экономическими показателями. Для Хибинского апатитового концентрата он равен 1,32, а для мытого обожжённого фосфоконцентрата фосфоритов Центральных Кызылкумов этот показатель составляет 1,96. Это означает, что на разложение последнего следует затратить серную кислоту на 48,5% больше, чем при разложении апатитового концентрата Хибинского месторождения.
Фосфорные удобрения, исходя из растворимости и усвояемости растениями, подразделяются на 3 группы [2]:
1) водорастворимые удобрения, в которых большая часть фосфорных соединений растворима в воде и, следовательно, легко усваиваются растениями (простой суперфосфат, двойной суперфосфат, сложные фосфорсодержащие удобрения – аммофос, нитроаммофоска, нитрофоска, карбоаммофоска);
2) цитратнорастворимые удобрения, в которых содержатся соединения фосфора, растворимые в аммиачном растворе лимоннокислого аммония (цитрата аммония). Из таких соединений фосфорная кислота обычно легко усваивается растениями в результате работы корневой системы. К цитратнорастворимым удобрениям относится преципитат (дикальцийфосфат);
3) лимоннорастворимые удобрения, нерастворимые в воде и аммиачном растворе цитрата аммония, но растворимые в 2 %-ном р-ре лимонной кислоты. К ним относятся обесфторенные фосфаты, томасшлак, фосфоритная мука. Фосфорные соединения этих удобрений медленно переходят в почвенный раствор и их действие длится ряд лет.
Водорастворимые удобрения практически универсальны и имеют высокую агрохимическую эффективность, особенно в начальной фазе роста растений. Однако хорошая растворимость фосфорных удобрений не всегда бывает преимуществом. Существенным недостатком водорастворимых форм является способность превращаться в труднорастворимые фосфаты при взаимодействии с кальцием, железом, алюминием и некоторыми другими элементами, содержащимися в почве, вследствие чего происходит потеря фосфора. Из вышеуказанного следует, что умеренно растворимые фосфорные удобрения являются более предпочтительными с практической точки зрения. Преимуществом таких удобрений является также то, что они не вымываются дождевыми и оросительными водами, и, следовательно, сокращаются их потери и не происходит загрязнение водоёмов [3,4]. Кроме того, воздействуя медленнее, водонерастворимые фосфаты обладают длительным последействием и растения могут усваивать третичные фосфаты кальция.
Проведены исследования по обогащению фосфоритов Центральных Кызылкумов химическим методом путём их обработки 57,87%-ной HNO3 при её нормах 80-100% от стехиометрического количества на разложение карбонатов с последующим выщелачиванием Ca(NO3)2 из нитрокальций-фосфатного раствора с помощью органического растворителя [5].
Данный фосфоконцентрат относится к активированным фосфоритам, а именно, к умеренно растворимым фосфорным удобрениям. Об этом свидетельствует высокое относительное содержание в нем усвояемой формы Р2О5 (59,9% по лимонной кислоте и 44,9% по трилону Б) по сравнению с исходной фосфатной мукой. Из этого следует, что одновременно с обогащением произошла и активация фосфатного сырья. Его обработка HNO3 приводит к разрушению и аморфизации кристаллической решётки фосфатного минерала, в результате чего повышается содержание усвояемой формы Р2О5. Такой концентрат пригоден не только для сернокислотной экстракции с получением аммофоса, но и для непосредственного внесения в почву в виде фосфатной муки, в связи с чем данный концентрат может служить подходящим компонентом при получении сложно-смешанных гранулированных удобрений, достоинством которых будет повышенная усвояемость фосфора.
Целью настоящего исследования являлась разработка новых методов обогащения фосфоритов Центральных Кызылкумов и поиск экономичных способов их переработки в эффективные фосфорсодержащие удобрения.
Объекты и методы исследования.
В качестве исходного сырья в работе использован фосфоритный концентрат, полученный путём обогащения фосфоритной муки (содержание Р2О5 =17,52%; СаО=47,53%; СО2 =15,23%) HNO3 в присутствии этанола. Фосфоконцентрат имел следующий состав (вес.%): Р2О5общ.=26,21; Р2О5усв. по лимон. к-те=15,46; Р2О5усв. по трилону Б=11,80; СаОобщ.=38,25; СаОусв.=19,20; СаОводн =2,28; СО2=2,78; СаО:Р2О5=1,46.
Эксперименты проводили следующим образом: при получении фосфорно-калийных (PK-) удобрений вначале сухой фосфоконцентрат смешивали с KCl (60% К2О), который предварительно размалывали в фарфоровой ступке. Далее в лабораторных условиях осуществили грануляцию тукосмесей методом окатывания [6]. Для этого пылевидный продукт помещали в фарфоровую чашку, дозировали необходимое количество воды и интенсивно размешивали, в результате чего образовывались влажные частицы округлой формы. При их высушивании при 105°С получали твёрдые гранулы, которые затем охлаждали и просеивали. Частицы размером 2-
На основе проведенных опытов на модельной установке апробирован технологический режим получения РК- и NPK-удобрений. Апробацию технологии получения этих удобрений из фосфоконцентрата проводили на укрупнённой лабораторной модельной установке, состоящей из реактора, изготовленного из нержавеющей стали (марка 12Х18Н10Т) объёмом 10 л, и снабжённого лопастной мешалкой.
Эксперименты на модельной установке осуществляли периодическим способом следующим образом: необходимое количество фосфоконцентрата при постоянном перемешивании загружали в реактор, затем добавляли расчётное количество воды для обеспечения влажности фосфоконцентрата в пределах 45-50%. В способе получения РК-удобрений к влажному концентрату добавляли кристаллический хлорид калия, а при получении NРК-удобрений, кроме KCl, прибавляли 85%-ный раствор аммиачной селитры. Влажную смесь далее тщательно примешивали с помощью лопастной мешалки в течение 10-15 мин. Образовавшуюся тестообразную массу переносили в эмалированный поддон, где проводили грануляцию влажного продукта методом окатывания. Сушку продуктов осуществляли в сушильной при температуре 100-105°С. Полученные гранулированные удобрения после сушки просеивали по фракциям.
Результаты и их обсуждение.
Исследованы процессы получения фосфорно-калийных (PK) и азотно-фосфорно- калийных (NPK) удобрений с различным соотношением питательных компонентов путём смешения фосфоконцентрата, хлорида калия и аммиачной селитры, а также изучена прочность полученных гранулированных удобрений (табл.1,2).
Из приведённых данных следует, что все марки PK- и NPK-удобрений отличаются высоким содержанием питательных веществ. Так, PK-удобрения, полученные в диапазоне массовых соотношений Р2О5:К2О от 1:0,3 до 1:2, содержат Р2О5общ. в интервале 14,21-23,74% и К2О от 6,96 до 28,01%.
При соотношении N:Р2О5:К2О=1:0,7:0,3 образуется NPK-удобрение с содержанием N=16,52%, Р2О5=11,68% и К2О=4,83%. При соотношении N:Р2О5:К2О=1:1:0,3 продукт содержит 13,79% N, 13,95% Р2О5 и 4,12% К2О (табл.2). При соотношении N:Р2О5:К2О =1:1:1 в продукте содержится 11,95% N, 12,00% Р2О5 и 11,94% К2О. Положительным при этом является и то, что в полученных сложно-смешанных удобрениях большая часть кальция находится в усвояемой для растений форме. Это, безусловно, является результатом обогащения – активации рядовой фосфоритовой муки. Следует отметить, что кальций входит в шестерку самых необходимых для растений питательных элементов [8].
Известно, что в сельском хозяйстве наибольшим спросом пользуется NPK-удобрения (соотношение N:Р2О5:К2О=1:0,7:0,5), в которых содержится 15,58%, 11,02% Р2О5общ. и 7,74% К2О, а прочность гранул которого составляет 5,46 МПа.
Таблица 1.
Физико-химические свойства PK-удобрений, полученных на основе фосфоконцентрата и хлористого калия
№ |
P2О5:K2О |
Химический состав высушенных осадков, % |
Прочность гранул, МПа |
|||||
P2O5общ. |
Р2О5усв. по 2%-ной лимон. к-те |
Р2О5усв. по 0,2М тр. Б |
CaOобщ. |
CaOусв. |
К2О |
|||
1 |
1:0,3 |
23,74 |
15,75 |
10,87 |
36,21 |
17,12 |
6,96 |
1,27 |
2 |
1:0,4 |
22,86 |
15,36 |
10,69 |
35,07 |
16,09 |
8,94 |
1,48 |
3 |
1:0,5 |
21,70 |
14,60 |
10,37 |
33,83 |
15,28 |
10,76 |
1,49 |
4 |
1:0,6 |
21,04 |
14,17 |
10,20 |
32,64 |
14,71 |
12,48 |
1,52 |
5 |
1:0,7 |
20,49 |
13,82 |
10,04 |
31,52 |
14,19 |
14,68 |
1,56 |
6 |
1:0,8 |
19,72 |
13,35 |
9,77 |
30,48 |
13,64 |
15,55 |
1,63 |
7 |
1:1 |
18,69 |
12,70 |
9,40 |
28,65 |
12,74 |
18,26 |
2,01 |
8 |
1:1,5 |
15,99 |
10,91 |
8,07 |
24,87 |
11,00 |
23,79 |
2,19 |
9 |
1:2 |
14,21 |
9,90 |
7,20 |
21,93 |
9,67 |
28,01 |
2,43 |
Таблица 2.
Физико-химические свойства NPK-удобрений, полученных на основе химически обогащённого фосфоконцентрата, аммиачной селитры и хлористого калия
№ |
N:P:K |
Химический состав высушенных осадков, % |
Прочность гранул, МПа |
||||||
N |
P2O5общ. |
Р2О5усв. по 2%-ной лимон. к-те |
Р2О5усв по 0,2М тр. Б |
CaOобщ. |
CaOусв. |
К2О |
|||
1 |
1:0,7:0,3 |
16,52 |
11,68 |
9,11 |
5,88 |
17,45 |
13,60 |
4,83 |
5,64 |
2 |
1:0,7:0,4 |
16,04 |
11,29 |
8,75 |
5,66 |
16,08 |
12,45 |
6,40 |
5,49 |
3 |
1:0,7:0,5 |
15,57 |
10,99 |
8,45 |
5,45 |
15,73 |
11,87 |
7,74 |
5,46 |
4 |
1:0,7:0,6 |
15,25 |
10,72 |
8,05 |
5,20 |
14,82 |
11,17 |
9,12 |
5,45 |
5 |
1:1:0,3 |
13,79 |
13,95 |
10,69 |
6,93 |
20,96 |
16,00 |
4,12 |
3,67 |
6 |
1:1:0,4 |
13,48 |
13,69 |
10,45 |
6,67 |
20,15 |
15,31 |
5,41 |
5,37 |
7 |
1:1:0,5 |
13,26 |
13,40 |
10,11 |
6,50 |
19,85 |
14,37 |
6,60 |
6,02 |
8 |
1:1:0,7 |
12,62 |
12,82 |
9,62 |
6,11 |
19,11 |
13,66 |
8,88 |
6,47 |
9 |
1:1:1 |
11,95 |
12,00 |
8,91 |
5,66 |
18,02 |
12,40 |
11,94 |
6,58 |
10 |
1:1:1,5 |
10,83 |
10,91 |
8,07 |
5,02 |
15,81 |
10,60 |
16,30 |
5,04 |
11 |
1:1:2 |
9,96 |
10,00 |
7,11 |
4,55 |
15,17 |
9,84 |
19,95 |
4,90 |
В экспериментальных условиях нами получено азотно-фосфорно-калийное удобрение при соотношении N:Р2О5:К2О=1:1:1 с содержанием 12,0% N, 12,02% Р2О5общ. и 11,99% К2О с прочностью гранул 6,58 Мпа, которые превышают показатели, предъявляемые к комплексным минеральным удобрениям.
Выводы. По результатам проведённых исследований показана принципиальная возможность получения сложных комплексных фосфорных удобрений нового типа. Физико-химические свойства и потребительские показатели новых PK- и NPK-удобрений, полученных при различных соотношениях питательных компонентов, позволяют предположить высокую эффективность их применения в сельском хозяйстве.
Список литературы:
1. Бойко В.С., Шабанина Н.В. Минералогические особенности зернистых фосфоритовых руд Кызылкумов и исследование их обогатимости // Узбекский геологический журнал. – 1979 – №3 – С.42-43.
2. Соколовский А.А., Унанянц Т.П. Краткий справочник по минеральным удобрениям. – М, Химия, 1977. – 376 с.
3. Вольфкович С.Н. Проблемы применения нерастворимых в воде фосфатов в качестве удобрений // Тезисы докл. VIII Международного конгресса по минеральным удобрениям. Ч. 2. – Москва,1976. – С. 126.
4. Мельникова Т.С., Котельников П.Н., Осипова З.М. Ретроградация фосфатов в полевом опыте на дерново-подзолистом суглинке // Фосфорные удобрения. – М.: ГХИ, 1958. Вып. 159. – С 119-125.
5. Дехканов З.К., Намазов Ш.С., Султанов Б.Э., Закиров Б.С., Сейтназаров А.Р. Азотнокислотное обогащение фосфоритов Центральных Кызылкумов. // Химическая технология. Контроль и управление. - Ташкент, 2011. - № 4. - С.5-11.
6. Сейтназаров А.Р., Турдиалиев У.М., Намазов Ш.С., Беглов Б.М. Механохимическая активация фосфоритовой муки Чилисайского месторождения // Химическая технология. Контроль и управление. – 2010. – №1. – С 5-11.
7. Винник М.М., Ербанова Л.Н., Зайцев П.М. и др. Методы анализа фосфатного сырья, фосфорных и комплексных удобрений, кормовых фосфатов. – М.: Химия, 1975. – 218 с.
8. Дехканов З.К., Сейтназаров А.Р., Намазов Ш.С., Султанов Б.Э., Беглов Б.М. Комплексные гранулированные удобрения на основе химически обогащённого фосфоконцентрата фосфоритов Центральных Кызылкумов. // Доклады АН РУз. – Ташкент, 2012. – №2. – С. 46-49.