DIFFERENTIAL ENTHALPY AND ENTROPY OF HYDROGEN SULFIDE ADSORPTION ON ZEOLITE CaA (M-22)

ДИФФЕРЕНЦИАЛЬНАЯ ЭНТАЛЬПИЯ И ЭНТРОПИЯ АДСОРБЦИИ СЕРОВОДОРОДА НА ЦЕОЛИТЕ СаА (М-22)
Цитировать:
DIFFERENTIAL ENTHALPY AND ENTROPY OF HYDROGEN SULFIDE ADSORPTION ON ZEOLITE CaA (M-22) // Universum: химия и биология : электрон. научн. журн. Rakhmatkarieva F. [и др.]. 2024. 11(125). URL: https://7universum.com/ru/nature/archive/item/18514 (дата обращения: 22.12.2024).
Прочитать статью:
DOI - 10.32743/UniChem.2024.125.11.18514

 

ABSTRACT

The paper presents experimentally obtained values of differential enthalpy of adsorption of H2S molecules at 303 K and entropy change in synthetic zeolite CaA (M-22). The differential enthalpy of adsorption was measured using a system consisting of a Tiana-Calvet DAC-1-1A type differential automatic microcalorimeter coupled to a universal high-vacuum instrument with high accuracy and stability. Gibbs energy was calculated from differential free energy values from equilibrium pressure values. From the differential heat and Gibbs energy, the entropy change and its mean value were theoretically calculated based on the Gibbs-Helmholtz equation. A regular relationship between the adsorption value and energy properties of H2S molecules and the sorption mechanism from the initial adsorption region to the heat of condensation region of H2S was established in CaA (M-22) zeolite, and the filling patterns of H2S molecules in the zeolite volume were determined. It is established that the adsorption capacity of this zeolite for hydrogen sulfide under experimental conditions (P=~550 torr) is equal to ~5 mmol/g in 1 g of zeolite. It is proved that in the first coordination sphere H2S molecules form trimer 3H2S:Na+ with sodium cations and monomer 1H2S:Ca2+ ion-molecular complex with Ca2+ cations. In general, the values of entropy change of zeolite CaA (M-22) adsorption entropy of hydrogen sulfide molecules are lower than the value of liquid state entropy at the experimental temperature, and its average value is -23 J/моль×К. It means that mobility of hydrogen sulfide molecules is close to mobility of liquid hydrogen sulfide, i.e., mobility of hydrogen sulfide molecules is limited.

АННОТАЦИЯ

В статье представлены экспериментально полученные значения дифференциальной энтальпии адсорбции молекул H2S при 303 К и изменения энтропии в синтетическом цеолите СаА (М-22). Дифференциальную энтальпию адсорбции измеряли с помощью системы, состоящей из дифференциального автоматического микрокалориметра типа Тиана-Кальве ДАК-1-1А, соединенного с универсальным высоковакуумным прибором с высокой точностью и стабильностью. Энергия Гиббса рассчитывалась из дифференциальных значений свободной энергии от равновесных значений давления. На основе дифференциальной теплоты и энергии Гиббса изменение энтропии и ее среднее значение были теоретически рассчитаны на основе уравнения Гиббса-Гельмгольца. В цеолите СаА (М-22) установлена ​​закономерная связь между величиной адсорбции и энергетическими свойствами молекул H2S, а также механизмом сорбции от начальной области адсорбции к области теплоты конденсации H2S и определены закономерности заполнения молекул H2S объема цеолита. Установлено, что адсорбционная емкость этого цеолита по сероводороду в условиях эксперимента (P=~550 мм.рт.ст.) равна ~5 ммоль/г в 1 г цеолита. Доказано, что в первой координационной сфере молекулы H2S образуют тример 3H2S:Na+ с катионами натрия и мономер 1H2S:Ca2+ ион-молекулярная комплекс с катионами Ca2+. В целом значения изменения энтропии цеолита СаА (М-22) адсорбции молекул сероводорода ниже значения энтропии жидкого состояния при температуре эксперимента, а ее среднее значение составляет -23 Дж/моль×К. Это означает, что подвижность молекул сероводорода близка к подвижности жидкого сероводорода, то есть подвижность молекул сероводорода ограничена.

 

Keywords: adsorption, zeolite, enthalpy, free energy, thermodynamics, pressure, micropores, hydrogen sulfide, cation, sodium, calcium.

Ключевые слова: адсорбция, цеолит, энтальпия, свободная энергия, термодинамика, давление, микропоры, сероводород, катион, натрий, кальций.

 

Introduction. Synthetic A-type zeolites are important materials in the field of adsorption due to their unique microporous structure and high selectivity towards different molecules. These compounds, obtained by hydrothermal synthesis, have a regular lattice structure, which provides a high surface area and the possibility of specific capture of molecules [1-4].

Type A zeolites have a three-dimensional porous structure with a pore size of about 4 Å, which allows them to adsorb small molecules such as water, ammonia, ionic compounds and organic substances efficiently. The main components that make up zeolites are aluminosilicate lattices containing SiO4 and AlO4 tetrahedra, which gives them anionic properties and the ability to exchange cations [5-8].

The sorption properties of type A zeolites depend on their composition, porosity and adsorption conditions. The main factors affecting adsorption include [9-13]:

1. Pore size: Since the pores of zeolites have a fixed size, they exhibit high selectivity towards molecules that can pass through them. This makes zeolites ideal for gas separation and pollutant removal.

2. Cation exchange: Cations located in the zeolite channels can be exchanged with ions from solution, which affects their sorption properties. This allows the adsorption of certain molecules to be controlled, increasing the selectivity of the material.

3. Temperature and Pressure: The sorption properties of zeolites can vary with temperature and pressure, which is important to consider when designing adsorption processes in industry.

Type A synthetic zeolites are multifunctional materials with excellent sorption properties that provide them with a wide range of applications in various industries. Their selective adsorption ability makes them indispensable for purification and separation tasks, which emphasises their importance in modern technologies. Zeolite’s synthesis and modification research continues to open up new opportunities for their applications, making them relevant for future developments [14-17].

Type A synthetic zeolites are multifunctional materials with excellent sorption properties that provide them with a wide range of applications in various industries. Their selective adsorption ability makes them indispensable for purification and separation tasks, which emphasizes their importance in modern technologies. Research into the synthesis and modification of zeolites continues to open up new opportunities for their applications, making them relevant for future developments [14-17].

Synthetic zeolites of type A are a group of porous aluminosilicates with unique sorption properties. Their structure and physicochemical characteristics make them important materials for various industrial and environmental applications such as gas adsorption, wastewater treatment and catalysis. The research conducted worldwide is mainly focused on the structure of zeolites and the arrangement of cations in them. There is little information on the study of the mechanism and thermodynamic functions of the adsorption process of hydrogen sulfide molecules.

In this paper we will consider the sorption properties of type A synthetic zeolites, their structure, sorption mechanisms and applications. There are a large number of adsorption data in LTA type zeolites, which have been obtained by various physicochemical methods of investigation.

However, the data obtained by adsorption-calorimetric method are scarce, which puts on the agenda the task of further detailed adsorption properties study of zeolites of CaA (M-22) type and obtaining the main thermodynamic characteristics of these systems.

Materials and methods.

The adsorption-calorimetric method used in this work makes it possible to obtain highly accurate molar thermodynamic characteristics, as well as to reveal detailed mechanisms of adsorption processes occurring on adsorbents and catalysts. A modified DAC-1-1A thermally conductive microcalorimeter with high accuracy and stability was used as a calorimeter. We used a BARATRON B627 membrane manometer to measure equilibrium pressures. Despite its external insulating shells, it is not adiabatic because the heat released in it is introduced from the calorimetric chamber as it is released and dissipated in a large metal block. Although the temperature of the calorimetric chamber changes only slightly, the apparatus cannot be called strictly isothermal; it exhibits small changes in temperature, which are unavoidable, and serve as the basis for measurements [14-20].

In this work, the isotherm and entropy of ammonia adsorption in zeolite CaA (M-22) at a temperature of 303 K are studied. The unit cell composition of this zeolite is represented by Ca2,975Na1,194(SiO2)12(AlO2)12) and consists of SI, SII and SIII positions. According to the chemical composition, the amount of calcium cations per 1 g of zeolite is 1.89 mmol/g and the amount of sodium cations is 0.76 mmol/g.

Results and discussion. The adsorption process studies of polar, nonpolar, quadrupole and aromatic molecules are carried out in the world to determine the mechanism and thermodynamic functions, including the following priority directions: synthesis of microporous adsorbents; improvement of their composition; synthesis of synthetic zeolites and determination of their adsorption properties; enhancement of selectivity of their adsorption properties due to the exchange of cations in the composition of zeolites A, X, Y, LSX and MFI types [14-28].

At adsorption of H2O by zeolite NaA on enthalpy three distinctly expressed regions are observed - the region of high (100 kJ/mol) heat of adsorption, the transition region and the region of relatively low (60 kJ/mol) heat of adsorption. It is assumed that the first two regions reflect the interaction of H2O molecules with cations in positions SII and SIII, and the third region corresponds to the adsorption of H2O on cations in positions SI [27-28]. In the case of NH3 adsorption in zeolite NaA, as in the case of H2O, the first NH3 molecules interact with Na+ cations in positions SII and SIII, and when one NH3 molecule per each cation, the interaction with Na+ cations in positions SI begins [29-30].

Figure 1 presents the variation in the differential enthalpy of hydrogen sulfide adsorption on CaA (M-22) zeolite. The stepwise change in the differential enthalpy of adsorption for various adsorbates on zeolites such as MFI, MOR, FAU, LTA, and others has been documented by several authors [14-20, 24-30].

 

Figure 1. The differential enthalpy of hydrogen sulfide adsorption (Qd) on CaA (M-22) zeolite at 303 K. The dashed line represents the heat of condensation of ammonia at 303 K

 

In the initial region, the differential heat (enthalpy) of adsorption is approximately 91 kJ/mol. As the adsorption amount increases at the active sites of the zeolite, the differential enthalpy decreases to 56 kJ/mol at an adsorption amount of 0.76 mmol/g, forming a plateau. According to the chemical composition of the CaA (M-22) zeolite, the amount of sodium cations present is 0.76 mmol/g. Thus, the hydrogen sulfide molecules initially adsorb on the sodium cations in the zeolite. Therefore, the plateau in the enthalpy at 0.76 mmol/g corresponds to the number of sodium cations in the zeolite, indicating the formation of an adsorbate/adsorbent monomer 1H2S:Na+ ion-molecular complex.

As the sorption volume of the CaA (M-22) zeolite continues to saturate, the adsorption enthalpy decreases to 50 kJ/mol at an adsorption amount of 1.52 mmol/g, forming a second plateau. This indicates that hydrogen sulfide molecules form a dimer 2H2S:Na+ ion-molecular complex with sodium cations. As sodium cations form a trimer 3H2S:Na+ ion-molecular complex with hydrogen sulfide molecules, the differential enthalpy increases from 50 to 52 kJ/mol. The 2 kJ/mol increase in enthalpy during the formation of the trimer 3H2S:Na+ complex is due to the additional energy released from the weak van der Waals interactions between hydrogen sulfide molecules (it is known from the literature that adsorbate-adsorbate interaction energy is 2 kJ/mol). After the formation of the trimer 3H2S:Na+ ion-molecular complex, the change in adsorption enthalpy is no longer dependent on the number of sodium cations in the zeolite. This suggests that the adsorption of hydrogen sulfide molecules on the initial active sites, specifically on the sodium cations, has been completed.

During the subsequent adsorption of hydrogen sulfide molecules on CaA (M-22) zeolite, the enthalpy change (including the change in adsorption entropy) varies in correlation with an adsorption amount of approximately ~1.9 mmol/g. This value corresponds to the amount of calcium cations present in the zeolite. Therefore, the next hydrogen sulfide molecules adsorb on the second active site of the zeolite, namely the calcium cations. At an adsorption amount of 3.2 mmol/g, the enthalpy decreases from 52 kJ/mol to 43 kJ/mol, forming a third plateau that remains unchanged up to an adsorption amount of 4.2 mmol/g. At 4.2 mmol/g, another plateau is formed. The difference between the adsorption amount of the trimer 3H2S:Na+ and the adsorption amount at 4.2 mmol/g is 1.9 mmol/g. This indicates that hydrogen sulfide molecules are adsorbed on the calcium cations, forming a monomer ion-molecular complex 1H2S:Ca2+ at an adsorption amount of 4.2 mmol/g. At an adsorption amount of approximately ~5 mmol/g, the differential enthalpy of hydrogen sulfide adsorption on the CaA (M-22) zeolite decreases to the enthalpy of liquid hydrogen sulfide at the experimental temperature, marking the end of the sorption process.

Entropy of adsorption of hydrogen sulfide is calculated from isotherms and differential enthalpies of adsorption according to the Gibbs-Helmholtz equation:         

where l is the heat of condensation, DH and DG are the enthalpy and free energy (Gibbs energy) changes during the adsorption process from the standard state to the adsorbed state.

Dependence of molar differential entropy of adsorption of hydrogen sulfide (DS) in zeolite CaA (M-22) on filling is presented in Fig.2 (entropy of liquid ammonia is taken as zero). The entropy of adsorption of hydrogen sulfide in zeolite CaA (M-22) differs from the entropy of adsorption of ammonia, water and carbon dioxide in zeolites CaA (M-22), NaA and Ca4Na4A [27-33], which indicates the different nature and mechanism of adsorption of hydrogen sulfide, ammonia, water and carbon dioxide in these zeolites. In general, it is located below the entropy of liquid hydrogen sulfide, indicating that the mobility of hydrogen sulfide molecules in the zeolite is limited.

 

Figure 2. Differential molar entropy of hydrogen sulfide adsorption in zeolite CaA (M-22). The horizontal dashed line is the mean molar integral entropy

 

The entropy of hydrogen sulfide adsorption in CaA zeolite (M-22) starts at -97 J/mol×К. At 0.76 mmol/g, the entropy increases to -11 J/mol×K. According to the chemical composition of the zeolite, the adsorption value of 0.76 mmol/g corresponds to the amount of sodium cations, that is, hydrogen sulfide molecules adsorb on sodium cations in the zeolite and form a 1H2S:Na+ ion-molecular complex in the first coordination sphere. Then at the adsorption value ~1.52 mmol/g the entropy decreases to -16 J/mol×K and a dimeric 2H2S:Na+ complex is formed. When another complex is formed with each sodium cation, the hydrogen sulfide molecules entropy decreases to -40 J/ mol×K forming a trimeric 3NH3:Na+ complex. Entropy at first increases and then decreases due to release of additional heat under the action of mutual Van der Waals forces of hydrogen sulphide molecules at formation of complete trimeric complex and limitation of mobility of ammonia molecules as a result of this force [28].

The entropy change as a function of the adsorption value in the subsequent sorption of hydrogen sulfide molecules does not correspond to the value of 0.76 mmol/g sodium in zeolite. It means that the process of sorption by ion-molecular mechanism of hydrogen sulfide and sodium in the first coordination sphere is completed. But it can be seen from the graph that the entropy change as a function of adsorption value corresponds to 1.89 mmol/g (Fig. 2). This value is equal to 1.89 mmol/g of calcium cations in the zeolite. Consequently, subsequent hydrogen sulfide molecules adsorb on calcium cations. When the adsorbate/cationic monomer 1H2S:Ca2+ is formed in the first coordination sphere of hydrogen sulfide molecules with calcium cations, the entropy increases linearly to -23 J/mol×K at 4.2 mmol/g. Adsorption on calcium cations is terminated by a monomeric 1H2S:Ca2+ ion-molecular mechanism. Further, with increasing saturation, the entropy increases to ~60 J/mol×K at ~5 mmol/g. The molar average integral entropy of adsorption is -23 J/ mol×K, indicating the retarded state of hydrogen sulfide molecules in the zeolite.

Conclusion.

As a result of adsorption-calorimetric study the differential enthalpy and calculated molar entropy of adsorption of hydrogen sulfide molecules in nanostructured zeolite CaA (M-22) were obtained. A stepwise change in the differential enthalpy and entropy of adsorption depending on the amount of sodium and calcium cations in the zeolite was found. Hydrogen sulfide molecules initially form trimeric ion-molecular complexes 3H2S:Na+ in the first coordination sphere with sodium cations and monomeric ion-molecular complexes 2H2S:Ca2+ with calcium cations. The molar average integral entropy of adsorption is -23 J/mol×K, indicating the loss of mobility of adsorbed hydrogen sulfide molecules in the pores of zeolite CaA (M-22). In zeolite CaA (M-22) a regular relationship between the adsorption value and energy properties of H2S molecules, as well as the mechanism of sorption from the initial adsorption region to the region of the heat of condensation of H2S has been established and the regularities of filling of H2S molecules in the zeolite volume have been determined.

 

References:

  1. J.Sun, C.Bonneau, A.Cantin, А.Corma, M.J.Diaz-Cabañas, М.Moliner, D.Zhang, M.Li and X.Zou Nature, 458, 1154-1157 (2009)
  2. A.B.Pinar, L.Gomez-Hortiguela, J.Perez-Pariente Cooperative Structure Directing Role of the Cage-Forming Tetramethylammonium Cation and the Bulkier Benzylmethylpyrrolidinium in the Synthesis of Zeolite Ferrierite Chemistry of Materials 2007 19 (23), 5617-5626
  3. A.S.Kovo. Development of Zeolite X and Y from Ahoko Nigerian Kaolin //Chemical Engineering: First Year Ph.D Report Manchester The University of Manchester. 2008. - P. 119-125.
  4. Q.Miao. Z.Zhou, J.Yang, J.Lu, S.Yan, J.Wang. Synthesis of NaA zeolite from kaolin source //Chem. Eng. China 2009. - No 3(1). - P. 8-11.
  5.  M.L.Pavlova, O.S.Travkinab, R.A.Basimovaa, I.N.Pavlovab, В.I.Kutepovb. Binder-Free Syntheses of High-Performance Zeolites A and X from Kaolin // Petroleum Chemistry 2009. - Vol. 49. - No. 1. - P. 36-41.
  6. W.M.Meier, D.H.Olson and Ch.Baerlocher Atlas of Zeolite Structure Types //Library of Congress Cataloging-in-Publication 1996. ‒ p. 278.
  7. Dussan, K., & Parra, M. Sorption Mechanisms of Zeolites //Microporous and Mesoporous Materials 2008, - Vol. 37. - No. 3. - p. 78-91
  8. Auerbach S. M., Carrado K. A., Dutta P. K. Handbook of Zeolite Science and Technology //CRC Press 2003, https://doi.org/10.1201/9780203911167
  9. X.Li et al. Zeolite Y adsorbents with high vapor uptake capacity and robust cycling stability for potential applications in advanced adsorption heat pumps. Microporous and Mesoporous Materials 201, Р.151-159 (2015).
  10. J.Rouquerol, F.Rouquerol, P.Llewellyn, G.Maurin, K.S.Sing Adsorption by powders and porous solids: principles, methodology and applications. (Academic press, 2013).
  11. M.B. Desta, J. Thermodyn. Batch sorption experiments: Langmuir and Freundlich isotherm studies for the adsorption of textile metal ions onto Teff straw (Eragrostis tef) agricultural waste,. Р.375830 (2013) 6, http://dx.doi.org/10.1155/2013/375830.
  12. H.Blank, M.Bulow, G.Finger. NaA- Zeolith adsorbiert n-geptan. Z.Chem.,-1974, B. 14, -H.2., -Р.76-77.
  13. A.Álvarez, A.Bansode, A.Urakawa, A.V.Bavykina, T. A.Wezendonk, M.Makkee, J.Gascon, F.Kapteijn. Challenges in the Greener Production of Formates/Formic Acid, Methanol, and DME by Heterogeneously Catalyzed Carbon Dioxide Hydrogenation Processes. Chem. Rev. 2017, 117 (14), Р.9804-9838.
  14. О.К.Эргашев, М.Х.Коххаров, Э.Б.Абдурахмонов. Энергетика адсорбции диоксид углерода в цеолите CаA //Universum: химия и биология: научный журнал. – № 7(61). «МЦНО», 2019. – 40 с. – Электрон. версия печ. публ. 23-27.
  15. Г.У.Рахматкариев, Ф.Г.Рахматкариева. Ион-молекулярные комплексы в наноструктурированном цеолите NaA //Universum: химия и биология: научный журнал. – № 7(61). «МЦНО», 2019. –40 с. – Электрон. версия печ. публ. 31-38.
  16. M.H.Kokharov, U.K.Axmedov, F.G.Rakhmatkarieva, E.B.Abdurakhmonov Investigation of water sorption to Са5Na3А zeolite at adsorption of micro calorimetric device //International Journal of Advanced Research in Science, Engineering and Technology Vol. 7, Issue 5, May 2020 y. P. 13939- 13944.
  17. F.Rakhmatkarieva, M.Kokhkharov, Kh.Bakhronov Adsorption of Ammonia on СаА (М-22) Zeolite Differential Heat and Mechanism //International Journal of AdvancedResearch in Science, Engineering and Technology Vol. 10, Issue 11, November 2023, -PP. 21258-21261
  18. Ergashev O.K., Bakhronov Kh.N., Rakhmatkarieva F.G., Esonkulova N.M., Akhmadov M.A., Rakhmonov O.K. Isotherm and thermokinetics of toluene adsorption on Cu2+ZSM-5 zeolite //Scientific and technical journal of  FerPI. -2023. -T.27. Special issue, -No. 10. -P.114-118
  19. Bakhronov Kh.N., Ergashev O.K., Esonkulova N.M., Rakhmatkarieva F.G., Absalyamova I.E. Differential heats and entropy of toluene adsorption on Cu2+ZSM-5 zeolite //Scientific Bulletin of Fergu State University. -N. 2. -2023. -S.59-64
  20. Rakhmatkariev G.U. Mechanism of Adsorption of Water Vapor by Muscovite: A Model Based on Adsorption Calorimetry //Clays and Clay Minerals, 2006, vol. 54, Р. 423-430.
  21. С.Б.Ляпин, Ф.Г.Рахматкариева, Г.У.Рахматкариев. Атомно-абсорбционное определение содержания ионообменных катионов в цеолитах //Химический журнал Казахстана. 2015, №3. - С.304-310.
  22. H.Blank, M.Bulow, G.Finger. NaA- Zeolith adsorbiert n-geptan. Z.Chem.,-1974, B. 14, -N.2., -Р.76-77.
  23. Т.Р.Бруева, А.Л. Клячко-Гурвич Теплота и кинетика адсорбции аммиака на цеолитах //Шестая всесоюзн. конф. по калориметрии. Тбилиси, Мецниереба, -1973, -С.186.
  24. Ахмедов У.К., Рахматкариева Ф.Г., Коххаров М.Х., Абдурахмонов Э.Б. СaА цеолитига карбонат ангидрид адсорбция энергетикаси// Композиционные материалы - 2019 й. № 2. -С. 97-100.
  25. Эргашев О.К., Коххаров М.Х., Абдурахмонов Э.Б. Энергетика адсорбции диоксид углерода в цеолите CaA //Universum: химия и биология: научный журнал 2019,№ 7(61). -С. 23-26
  26. Рахматкариева Ф.Г., Абдурахмонов Э.Б., Абдулхаев Т.Д., Коххаров М.Х., Худойберганов М.С. Синтетик LiLSX цеолитида бензол адсорбция изотермаси ва дифференциал иссиқлиги //Композиционные материалы. -2019. -№4. -С. 21-25
  27. Коххаров М.Х., Рахматкариева Ф.Г., Абдурахмонов Э.Б. Энергетика адсорбции воды в цеолите СaА //Наманган давлат унверситети илмий ахборотномаси 2019 й. № 9 С. 26-33
  28. Kokharov Mirzokhid Husanboevich, Axmedov Ulug’ Karimovich, Rakhmatkarieva Firuza Gayratovna, Abdurakhmonov Eldor Baratovich Investigation of water sorption to Са5Na3А zeolite at adsorption of micro calorimetric device //International Journal of Advanced Research in Science, Engineering and Technology Vol. 7, Issue 5, 2020. -р. 13939-13944
  29. Рахматкариева Ф.Г., Абдурахмонов Э.Б.,  Худойберганов М.С. Энергетика адсорбции аммиака в цеолите NaX //Universum: химия и биология Выпуск: 6(60), июнь 2019. -С.39-42
  30. Рахматкариева Ф.Г., Абдурахмонов Э.Б., Жабборов А.О., Абдурахмонов А.Б. Закономерности адсорбции аммиака в наноструктурированном цеолите LiLSX //Universum: химия и биология Выпуск: №4(70), 2020. С. 39-43
  31. Ахмедов У.К., Рахматкариева Ф.Г., Коххаров М.Х., Абдурахмонов Э.Б. СaА цеолитига карбонат ангидрид адсорбция энергетикаси //Композиционные материалы - 2019 й. № 2. -С. 97-100
  32. Эргашев О.К., Коххаров М.Х., Абдурахмонов Э.Б. Энергетика адсорбции диоксид углерода в цеолите CaA //Universum: химия и биология: научный журнал 2019 йил № 7(61). -С. 23-26
  33. Коххаров М.Х., Ахмедов У.К., Рахматкариева Ф.Г., Абдурахмонов Э.Б. Ca4Na4A цеолитига углерод (IV) оксиди адсорбцияси энергетикаси //Наманган муҳандислик-технология институти илмий-техника журнали Том 5, - №1, 2020 г. -С.142-148
Информация об авторах

Doctor of chemical sciences, chief researcher, Institute of General and Inorganic Chemistry of the Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan

д-р хим. наук, главный научный сотрудник Института общей и неорганической химии АН РУз, Узбекистан, г. Ташкент

Candidate of chemical sciences, doctoral student of Namangan Institute of Engineering and Technology, Namangan, Uzbekistan

канд. хим. наук, докторант Наманганского инженерно-технологического института, Узбекистан, г. Наманган

Dосtоr оf Сhеmiсаl Sсiеnсеs, Prоfеssоr аt Таshkеnt Univеrsity оf Infоrmаtiоn Тесhnоlоgiеs nаmеd аftеr Muhаmmаd аl-Khоrеzmi, Uzbеkistаn, Таshkеnt

д-р хим. наук, профессор Ташкентского университета информационных технологий имени Мухаммада аль-Хорезмий, Узбекистан, г. Ташкент

Candidate of Physical and Mathematical Sciences, Associate Professor, Head of Physics Department of Tashkent University of Information Technologies named after Muhammad al-Khwarizmi, Tashkent, Uzbekistan

канд. физ.-мат. наук, доцент, заведующий кафедрой физики Ташкентского университета информационных технологий имени Мухаммада аль-Хорезми, Узбекистан, г. Ташкент

Candidate of Physical and Mathematical Sciences, Associate Professor of Tashkent University of Information Technologies named after Muhammad Al-Khwarizmi, Tashkent, Uzbekistan

канд. физ.-мат. наук, доцент Ташкентского университета информационных технологий имени Мухаммада аль-Хорезмий, Узбекистан, г. Ташкент

scientific researcher, Namangan Institute of Engineering and Technology, Namangan, Uzbekistan

соискатель Наманганского инженерно-технологического института, Узбекистан, г. Наманган

Журнал зарегистрирован Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор), регистрационный номер ЭЛ №ФС77-55878 от 17.06.2013
Учредитель журнала - ООО «МЦНО»
Главный редактор - Ларионов Максим Викторович.
Top