DETERMINATION OF THE AMOUNT OF FLAVONOID IN INDUSTRIAL HEMP AND LICORICE GROWN IN UZBEKISTAN, USING A HIGH-PERFORMANCE LIQUID CHROMATOGRAPH THE ROLE OF FLAVONOIDS IN THE PHARMACOPOEIA

ОПРЕДЕЛЕНИЕ КОЛИЧЕСТВО ФЛАВОНОИДА В ТЕХНИЧЕСКОЙ КОНОПЛЕ И СОЛОДКЕ ВЫРАЩЕННЫХ В УЗБЕКИСТАНЕ МЕТОДОМ ВЫСОКОЭФФЕКТИВНОГО ЖИДКОСТНОГО ХРОМАТОГРАФА. РОЛЬ ФЛАВОНОИДОВ В ФАРМАКОПЕИ
Цитировать:
DETERMINATION OF THE AMOUNT OF FLAVONOID IN INDUSTRIAL HEMP AND LICORICE GROWN IN UZBEKISTAN, USING A HIGH-PERFORMANCE LIQUID CHROMATOGRAPH THE ROLE OF FLAVONOIDS IN THE PHARMACOPOEIA // Universum: химия и биология : электрон. научн. журн. Mamadaliev A.N. [и др.]. 2021. 9(87). URL: https://7universum.com/ru/nature/archive/item/12230 (дата обращения: 21.11.2024).
Прочитать статью:
DOI - 10.32743/UniChem.2021.87.9.12230

 

ABSTRACT

This article describes the results of a study of organic compounds of great interest in terms of the source of flavonoids.  Industrial hemp (Cannabis Sativa L) and licorice (Glycyrrhiza glabra L) grown in Uzbekistan are promising sources of flavonoids.   Flavonoids such as quercetin and its role in pharmacology have been studied individually from the above raw materials.

АННОТАЦИЯ

В настоящей статье обсуждаются результаты исследований органических соединений, представляющих наибольший интерес в плане источника получения флавоноидов. Перспективным источником флавоноидов являются техническая конопля (Cannabis Sativa L) и солодка (Glycyrrhiza glabra L) вырешенных в Узбекистане. Из вышеперечисленного сырья в индивидуальном виде изучены такие флавоноиды, как кверцетин и его роль в фармакологии.

 

Keywords: industrial hemp (Cannabis Sativa L), licorice (Glycyrrhiza glabra L), pharmacopoeia, flavonoids, phenolic compounds, biologically active compounds (BAC), medicinal plant raw materials (MP), antioxidant, antitumor, antimutagenic and antiviral.

Ключевые слова: техническая конопля (Cannabis Sativa L), солодка (Glycyrrhiza glabra L), фармакопея, флавоноиды, фенольные соединения, биологически активные соединения (БАС), Лекарственное растительное сырье (ЛРС), антиоксидант, противоопухолевый, антимутагенный и противовирусный.

 

Introduction

In recent years, scholars have paid special attention to phenolic compounds, including the active study of flavonoids. [1]. The reason for this is that the flavonoids contained in medicinal plants manifest themselves not only as potential antioxidant drugs, but also as biologically active compounds (BAC), which can act as antioxidants in herbal remedies and herbal preparations, contributing to the successful treatment of diseases, the cause or which result in disturbances in the antioxidant defense system of the body [1, 9]. Medicinal plant raw materials (MP) containing flavonoids are widely used in medical practice as choleretic, hepatoprotective, antioxidant, angioprotective, diuretic, anti-inflammatory, antiulcer, antispasmodic drugs [2,7].  Over the past 15-20 years, the number of pharmacopoeial raw materials classified as flavonoids has increased from 11 to 30. In addition, flavonoids have a position in the second group of BAC in 35 species of medicinal plants, including essential oil raw materials (tansy flowers, peppermint leaves, tarragon wormwood herb, etc.) [10]. For example, quercetin is a promising agent for therapy in neurology, psychiatry, somnology, and oncology. In experiments on animals, anxiolytic and antidepressant properties of quercetin were recorded, and the latter were comparable in strength to the action of fluoxetine and imipramine [12, 13]. Quercetin has a positive effect on the sleep cycle by activating GABA receptors [14]. In oncology, in recent years, quercetin has been given special attention as a means of chemoprophylaxis for certain types of cancer diseases (breast cancer, liver cancer, ovarian cancer, pancreatic cancer). Already relatively low doses of quercetin lead to specific inhibition of tumor cell proliferation, interrupting the cell cycle in the G1 phase [15]. A significant number of existing studies in both animals and humans (preclinical phase) show that quercetin is a promising chemotherapeutic agent in combination with several other chemotherapy drugs [11].

The purpose of this research: Study of the role of quercetin in pharmacology and its determination by the method of high-performance liquid chromatograph, in industrial hemp (Cannabis Sativa L) and licorice (Glycyrrhiza glabra L) issued in Uzbekistan.

Material and research methods

The objects of the research were twenty-five (25) grams of dry leaves isolated from sowing hemp (Cannabis Sativa L.) and licorice (Glycyrrhiza glabra L) (quartzin). On a water bath for three (3) hours at a temperature of 100°C, twenty-five (25) g of crushed raw materials were extracted five (5) times, in 100 ml of 40% aqueous ethanol (1:24 vol.), On each repetition of the extraction checked the amount of flavonoids by HPLC. To determine quercetin by HPLC, a Shim-pack GIST-HP C18 150 x 4.6, 3 μm column (Shimadzu, Japan) was used. The mobile phase consisted of 0.5% acetic acid-acetonitrile mixture (35:65 vol.). The speed of the mobile phase is 1 ml / min. The detection wavelength is 354 nm.

Results and discussion

Diagram 1 shows the results of the chromatographic determination of phenolic compounds in industrial hemp (Cannabis Sativa L) and licorice (Glycyrrhiza glabra L).

 

Figure 1. Chromatogram of separation of a mixture of flavonoid compounds of industrial hemp extract (a) and licorice (b):

Quercetin;. Mobile phase: 0.5% acetic acid-acetonitrile mixture (35:65 vol.). The speed of the mobile phase is 1 ml / min. The detection wavelength is 354 nm.

 

Diagram 1. Mass ratio of quercetin in the leaves of industrial hemp and licorice plant

 

Table 1.

Results of chromatographic analysis of industrial hemp and licorice

Name

Component

Hold time.

Peak

area

Peak Height

Concentration

mg / l

1

Standard

Quercetin

9.490

594518

14543

1,000

2

Technical hemp

Quercetin

9.561

71152

1969

0,3

3

Licorice

Quercetin

9.615

1088339

48137

3,051

 

In a review of studies on quercetin published at the beginning of this century, Scholz and Williamson found that the factors that most affect the bioavailability and absorption of quercetin are the structure of the simple or complex carbohydrate (sugar) that binds to it, as well as its solubility, which may vary depending on the inclusion of alcohols and fats in the daily diet (10). Most animal studies have shown that certain dietary aspects affect the bioavailability of quercetin. It was found that quercetin glycosides have a higher bioavailability in combination with some, poly and monosaccharides. Also, it has been proven that quercetin is best absorbed in combination with pectin and insoluble oligosaccharides, perhaps the reason for this may be changes in the quantitative and qualitative composition of the intestinal microflora, which improves its absorption (6, 7).  A diet containing phenolic compounds (in our case, foods made from hemp) for 6 weeks doubles the plasma levels of quercetin, and a diet low in them leads to a decrease in its plasma level by 30% (8).

Conclusion

HPLC methods determined the quantitative content of quercetin in the composition of industrial hemp (Cannabis Sativa L) and licorice (Glycyrrhiza glabra L) grown in Uzbekistan. Flavonols of quercetin (primarily glycosides), the most common representatives of flavonoids, are present in a fairly large number of foods, as well as in seeds, nuts, flowers and leaves, and in certain cereals, garden and medicinal plants. A significant portion of dietary quercetin is its glycosides; Quercetin aglycones are present in the diet in a much smaller volume. However, the content of quercetin in products is significantly influenced by the conditions of their cultivation (soil and climatic conditions, organic cultivation, etc.).

 

References:

  1. Vengerovsky A.I., Saratikov A.S. The mechanism of action of hepatoprotectors in toxic liver damage // Pharmacology and toxicology. - 1988. No. 1. - pp. 89-94
  2. Korulkin D.Yu., Abilov Zh.A., Muzychkina R.A., Tolstikov G.A. Natural flavonoids. Novosibirsk: Academic publishing house “Geo”, 2007. –p. 232
  3. Kurkin V.A., Pravdivtseva O.E. St. John’s Wort: Results and Prospects for the Creation of Medicines: Monograph. Samara: GOU VPO “SamSMU”; LLC “Etching”, 2008. –p. 127
  4. Kurkin V.A. Fundamentals of herbal medicine: A textbook for students of pharmaceutical universities. - Samara: OOO “Etching”, GOU VPO, SamSMU Roszdrav, 2009. - 963 p.
  5. Kurkina A. V.  Flavonoids of pharmacopoeial plants: Monograph. - Samara: OOO “Etching”; SBEE VPO SamSMU Ministry of Health and Social Development of Russia, 2012. –p. 290
  6. Tamura M, Nakagawa H, Tsushida T, et al. Effect of pectin enhancement on plasma quercetin and fecal flora in rutin-supplemented mice. J FoodSci 2007;72: S648-S651.
  7. Matsukawa N, Matsumoto M, Shinoki A, et al. Nondigestible saccharides suppress the bacterial degradation of quercetin aglycone in the large intestine and enhance the bioavailability of quercetin glucoside in rats. J Agric Food Chem 2009; 57:9462-9468.
  8. Erlund I, Freese R, Marniemi J, et al. Bioavailability of quercetin from berries and the diet. Nutr Cancer 2006; 54:13-17.
  9. Erlund I, Marniemi J, Hakala P, et al. Consumption of black currants, lingonberries and bilberries increases serum quercetin concentrations. Eur J Clin Nutr 2003; 57:37-42.
  10. Scholz S, Williamson G. Interactions affecting the bioavailability of dietary polyphenols in vivo. Int J Vitam Nutr Res 2007; 77:224-235.
  11. Gregory S. Kelly ND. Quercetin. AMR 2011; 16:2: 172-94
  12. Bhutada P, Mundhada Y, Bansod K, et al. Reversal by quercetin of corticotrophin releasing factor induced anxiety- and depression-like effect in mice.   Prog Neuropsychopharmacol Biol Psychiatry2010;34:955-960.
  13. Singh A, Naidu PS, Kulkarni SK. Quercetin potentiates L-Dopa reversal of drug-induced catalepsy in rats: possible COMT/MAO inhibition. Pharmacology 2003;68:81-88.
  14. Kambe D, Kotani M, Yoshimoto M, et al. Effects of quercetin on the sleep-wake cycle in rats: involvement of gamma- aminobutyric acid receptor type A in regulation of rapid eye movement sleep. Brain Res 2010; 1330:83-88.
  15. J Jeong, J An, Y T Kwon, J G. Rhee, YJ. Lee. Effects of low-dose quercetin:cancer-specific inhibition of cell cycle progression. J Cell Biochem. 2009 January 1; 106(1): 73–82.
Информация об авторах

Doctoral student of 1st grade of Chemistry faculty, Gulistan State University of Uzbekistan, Uzbekistan, Gulistan

докторант 1 курса химического факультета Гулистанского государственного университета, Республика Узбекистан, г. Гулистан

Doctoral student of 1st grade of Chemistry faculty Gulistan State University, Uzbekistan, Gulistan

докторант 1 курса химического факультета Гулистанского государственного университета, Узбекистан, г. Гулистан

Doctor of Biological Sciences, Professor, Head of the Laboratory of "Experimental Biology" of the Gulistan State University of Uzbekistan, Uzbekistan, Gulistan

д-р биол. наук, профессор, заведующий лабораторией «Экспериментальной биологии» Гулистанского государственного университета, Республика Узбекистан, г. Гулистан

Director of the laboratory RS Success Agro LLC, Uzbekistan, Khovost

директор лаборатории СПООО «RS Success Agro», Узбекистан, г. Хаваст

Журнал зарегистрирован Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор), регистрационный номер ЭЛ №ФС77-55878 от 17.06.2013
Учредитель журнала - ООО «МЦНО»
Главный редактор - Ларионов Максим Викторович.
Top