д-р хим. наук, проф., декан химического факультета Национального университета Узбекистана имени Мирзо Улугбека, Республика Узбекистан, г. Ташкент
Определение антиоксидантных свойств комплексных соединений Co(II) и V(V) с 5-(пиридин-4-ил)-1,3,4-оксадиазол-2(3Н)-тионом
АННОТАЦИЯ
На основе 5-(пиридин-4-ил)-1,3,4-оксадиазол-2(3Н)-тиона синтезированы новые комплексные соединения [V4O12](L+Н)4 и [V4O12]{Со(L)2}2. Спектрофотометрическим методом определена антиоксидантная активность полученных веществ, которая была проанализирована в сравнении с квертецином и гликлазидом. [V4O12](L+Н)4 и [V4O12]{Со(L)2}2 оказались высокоактивными антиоксидантами.
ABSTRACT
On the basis of 5-(pyridin-4-yl)-1,3,4-oxadiazol-2(3H) -thione, new complex compounds [V4O12](L+Н)4 and [V4O12]{Со(L)2}2 were synthesized. Spectrophotometric method was used to determine the antioxidant activity of the obtained substances, which was analyzed in comparison with quercetin and gliclazide. [V4O12](L+Н)4 and [V4O12]{Со(L)2}2 turned out to be highly active antioxidants.
Ключевые слова: ванадат аммония, 5-(пиридин-4-ил)-1,3,4-оксадиазол-2(3H)-тион, антиоксидант, лиганд, комплексные соединения, гетероцикл, ингибирование.
Keywords: ammonium vanadate, 5-pyridyl-1,3,4-oxadiazole-2(3H)–thion, antioxidant, ligand, complex compounds, heterocyclic, inhibition.
ВВЕДЕНИЕ
Наиболее важной проблемой современной координационной химии является направленный синтез веществ с заданными свойствами и строением. Решение этой проблемы в применении к координационной химии невозможно без проведения систематических исследований взаимосвязи состава, структуры и свойств комплексных соединений.
Комплексы переходных металлов с органическими N,S-содержащими лигандами в последние годы широко исследуются как модели металлоферментов и катализаторы окислительно-восстановительных реакций. Получение низкомолекулярных аналогов природных металлоферментов является актуальным направлением в современной биоорганической и бионеорганической химии. Ферменты, содержащие в активном центре ионы переходных металлов, катализируют различные химические превращения: окисление, гидроксилирование, аминирование, эпоксидирование, циклопропанирование, окисления сульфидов и др. При этом катализ осуществляется при атмосферном давлении и комнатной температуре, с высокой селективностью и выходом.
1,3,4-Оксадиазолы и их производные проявляют высокую и разнообразную биологическую активность [1–4] и широко используются в качестве органических сцинтилляторов, фотостабилизаторов полимеров, электронных транспортных материалов, компонентов активной среды лазеров на красителях, органических полупроводников и других материалов для современной оптоэлектроники [5]. Особой и быстро развивающейся областью применения 1,3,4-оксадиазолов, обусловленной их привлекательными спектральными и люминесцентными свойствами, является конструкция на их основе серии эффективных флуоресцентных и фосфоресцирующих люминофоров [6–8] и высокоэмиссионных материалов с низким самопоглощением [9].
Молекулы физиологически активных соединений на основе оксадиазола образуют сильные полярные группы с электрофильными и электрофобными реакционными центрами, демонстрируя тем самым биологическую активность и могут выступать в качестве основного реагента для ферментов или других рецепторных клеток. Все это позволяет целенаправленно синтезировать конкретные структуры и соответствующие металлокомплексы.
Цель работы - определить антиоксидантные свойства комплексных соединений ванадия(V) и ванадий-кобальт гетерометалльного комплекса с 5-(пиридин-4-ил)-1,3,4-оксадиазол-2(3Н)-тионом.
ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ
Для синтеза комплексного соединения [V4O12](L+Н)4 водный раствор ванадата аммонния добавляли к спиртовому раствору лиганда (в молярном соотношении М:L 1:2), pН=8.0. Реакцию проводили путем нагревания в ультразвуковой бане в течение 60 минут, после чего реакционную смесь отфильтровывали и оставляли для кристаллизации. Через 3 дня комплексный осадок отделяли, промывали этанолом и сушили на открытом воздухе. Выход составил 84%, Tпл= 223-224°C (табл. 1).
Гетерометалльный ванадий-кобальтовый комплекс с 5-(пиридин-4-ил)-1,3,4-оксадиазол-2(3Н)-тионом был синтезирован по аналогичной методике, за исключением времени нагревания (40 минут). Молярное соотношение М:М:L 1:1:2. Выход составил 71%, Tпл= 316-317°C [10]. Растворимость синтезированных комплексных соединений изучалась в разных растворителях (табл. 2).
Таблица 1.
Характеристика лиганда и синтезированных комплексных соединений
Соединение |
Брутто формула |
Цвет |
Темп.пл.0С |
Выход % |
L |
C7H5N3OS |
Светло-желтый |
195-196 |
- |
[V4O12](L+Н)4 |
C28H24N12O16S4V4 |
Желтовато-зеленый |
223-224 |
84 |
[V4O12]{Со(L)2}2 |
C28H20N8O16S4V4Co2 |
Темно-зеленый |
316-317 |
71 |
Таблица 2.
Растворимость лиганда и производных комплексных соединений
Соединение |
Вода |
Бензол |
Этанол |
Хлороформ |
ДМФА |
L |
Н |
Р |
Р |
Р |
Р |
[V4O12](L+Н)4 |
Р |
Н |
М |
Н |
Р |
[V4O12]{Со(L)2}2 |
М |
Н |
М |
Н |
Р |
Р - растворяется, Н- нерастворяется, М - малорастворяется.
Из таблицы 2 видно, что молекула лиганда имеет хорошую растворимость в органических растворителях и не растворяется в воде. Было выяснено, что синтезированный оксованадиевый комплекс имеет лучшую растворимость в воде, чем гетерометальный комплекс и лиганд. Хорошее плавление соединения [V4O12](L+Н)4 можно объяснить его недостаточной координацией. Снижение растворимости гетерометалльного соединения можно объяснить насыщением атомов ванадия.
У подвергнутых фитохимическому анализу образцов исследуемых соединений (лиганд и комплексные соединения), была определена антиоксидантная активность, которую оценивали с использованием методики [11]. Об антиоксидантной активности соединений судили по их способности ингибировать аутоокисление адреналина invitro, и тем самым, предотвращать образование активных форм кислорода. Известно, что в результате окисления адреналина образуется вредный для организма адренохром, вызывающий окислительный стресс организма.
Для этого к 4 мл 0,2 М натрий-карбонатного буфера, рН=10,65 (устанавливаемое добавлением к 0,2 М раствору Na2CO3 сухого реактива NaHCO3) добавляли 0,2 мл 0,1 % (5,46 мМ) аптечного раствора адреналина гидрохлорида, тщательно и быстро перемешивали, помещали в спектрофотометр AgilentTechnologiesCary 60 UV-Vis и определяли оптическую плотность через 30 с в течение 10 мин при длине волны 347 нм в кювете толщиной 10 мм (D1). Далее к 4 мл буфера (рН = 10,65) добавляли 0,06 мл образца исследуемого комплексного соединения и 0,2 мл 0,1 % адреналина гидрохлорида, перемешивали и измеряли оптическую плотность, как описано выше (D2). Антиоксидантную активность (АА) исследуемых соединений выражали в процентах ингибирования аутоокисления адреналина и вычисляли по формуле:
Если AА показывает значение более 10%, это указывает на высокую антиоксидантную активность.
Для изучения антиоксидантной активности синтезированных комплексов были выбраны следующие соединения:
- Лиганд -5-(пиридин-4-ил)-1,3,4-оксадиазол-2(3Н)-тион
- [V4O12](L+Н)4
- [V4O12]{Со(L)2}2
Согласно литературным данным, каждое лекарственное средство следует разбавлять 1:80 (1 объем антиоксиданта: 80 объем H2O), поскольку способность препарата реагировать с этим количеством является оптимальной [12].
РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ
Сравнивали антиоксидантные свойства концентраций 10%, 25%, 50%, 75% и 100% каждого вещества, затем были выбраны наиболее активные. Антиоксидантные свойства лиганда и комплексных соединений были исследованы, результаты были сопоставлены с кверцетином и гликлазидом, и приведены в таблице 3.
Антиоксидантная активность лиганда и полученных соединений в пяти различных концентрациях каждого образца была исследована и сравнена с применяемыми в клинической практике и доказавшими свою антиоксидантную активность, кварцетином и гликлазидом [12].
Таблица 3.
Антиоксидантная активность
№ |
Наименование соединения |
Конц, % |
D1 |
D2 |
АА соед. (%) |
АА квер- цитина(%) |
АА глик- лазида (%) |
1 |
5- (пиридин-4-ил)-1,3,4-оксадиазол-2(3Н)-тион |
10 |
0,2571 |
0,2139 |
16,80 |
35,7 |
10 |
25 |
0,3097 |
0,2490 |
19,60 |
||||
50 |
0,4074 |
0,3167 |
22,26 |
||||
75 |
0,3781 |
0,2972 |
21,40 |
||||
100 |
0,7411 |
0,5193 |
29,72 |
||||
2 |
[V4O12](L+Н)+4 |
10 |
0,2814 |
0,2228 |
21,42 |
35,7 |
10 |
25 |
0,4615 |
0,3427 |
26,08 |
||||
50 |
0,6128 |
0,4447 |
27,86 |
||||
75 |
0,7497 |
0,5214 |
29,72 |
||||
100 |
1,1642 |
0,7844 |
32,75 |
||||
3 |
[V4O12]{Со(L)2}2 |
10 |
0,9112 |
0,7343 |
19,41 |
35,7 |
10 |
25 |
1,3764 |
1,0391 |
24,81 |
||||
50 |
1,7150 |
1,1594 |
32,39 |
||||
75 |
1,6582 |
1,1471 |
30,82 |
||||
100 |
1,4193 |
1,0584 |
25,42 |
Максимальную антиоксидантную активность лиганд показал при концентрации 100%, таким же образом повел себя и ванадиевый комплекс, тогда как ванадий-кобальтовый гетерометалльный комплекс показал максимальную антиоксидантную активность при концентрации 50 %. Установлено, что гликлазид ингибирует аутоокисление адреналина на 10 %, кверцетин на 35,7 %, [V4O12](L+Н)4 на 32,75 %, [V4O12]{Со(L)2}2 на 32,39%. Из полученных результатов следует, что препарат гликлазид по эффекту на модели с аутоокислением адреналина уступает в три раза кверцетину и полученным комплексным соединениям.
ВЫВОДЫ
Таким образом, было обнаружено, что антиоксидантная активность комплексного соединения [V4O12](L+Н)4 при максимальной концентрации составила 32,75%, у комплексного соединения [V4O12]{Со(L)2}2 при концентрации 50% антиоксидантная активность составила 32,39%, что, несомненно, является высокими показателями для ингибирования аутоокисления адреналина.
Список литературы:
1. Khalilullah H., Ahsan M.J., Hedaitullah Md., Khan S. 1,3,4-Oxadiazole: A Biologically Active Scaffold // Minireviews in Medicinal Chemistry. -2012. -12. -P. 789-801.
2. Pattan S., Musmade D., Muluk R., Pawar S., Daithankar A. Synthesis, antimicrobial and antitubercular activity of some novel [3-isonicotinoyl-5-(4-substituted)-2,3-dihydro-1,3,4-oxadiazole-2-yl] and substituted 5-(pyridin-4-yl)-1,3,4-oxadiazole-2-thiol derivatives // Indian Journal of Chemistry -2013. -Vol. 52B. -P. 293-299.
3. Akhter M. [et al.]. Aroylpropionic acid based 2,5-disubstituted-1,3,4-oxadiazoles: Synthesis and their anti-inflammatory and analgesic activities // Eur. J. Med. Chem. - 2009. -V. 44. - P. 2372-2378.
4. Bostrom J. [et al.]. Oxadiazoles in Medicinal Chemistry // J. Med. Chem. - 2012. - V.55. - P.1817-1830.
5. Chi Lee W. [et al.]. Organic materials for organic electronic devices // J. Ind. Eng. Chem. - 2014. - V.20. -P.1198-1208.
6. Yang H. [et al.]. Synthesis, X-ray crystal structure and optical properties of novel 2,5-diaryl-1,3,4-oxadiazole derivatives containing substituted pyrazolo[1,5-a]pyridine units // Dyes and Pigments. - 2011. -V.91. -P. 446-453.
7. Lv H.-Sh. [et al.]. The synthesis, characterization and optical properties of novel, substituted, pyrazoly-1,3,4-oxadiazole derivatives // Dyes and Pigments. -2010. -V. 86. -P. 25-31.
8. Mikhailov I.E. [et al.]. Spectral Luminescent Properties of 2-(2-Hydroxyphenyl)-5-methyl-1,3,4-oxadiazole and Its Acetyl(benzoyl)oxy Derivatives // Russ. J. Org. Chem. -2016. -V. 52. -№ 11. - P. 1700-1703.
9. Jin Y.-M. [et al.]. Efficient organic light-emitting diodes with low efficiency roll-off using iridium emitter with 2-(5-phenyl-1,3,4-oxadiazol-2-yl)phenol as ancillary ligand // Organomet. Chem. -2014. -V. 765. -P. 39-45.
10. Заузолкова H.B. Разработка способов синтеза гетерометаллических комплексов Зd-элeмeнтoв (Co(II), Ni(II), Cu(II)) с карбоксилатными лигандами и их аналогами. Дисс. ….канд. хим. Наук. - Москва, 2010, -С.165
11. Рябинина Е.И. и др., Сравнение химико-аналитических методов определения тионидов и антиоксидантной активности растительного сырья // Аналитика и контроль. 2011. Т. 15. №2. -С.202-208.
12. Баровский Е.В., Бокуть С.Б. и др. Современные проблемы биохимии. Методы исследований: Учеб.пособие: Выш. шк. 2013. -С.491.