д-р хим. наук, заслуженный изобретатель, профессор кафедры химии Андижанского государственного университета им. З.М. Бабура, 170100, Республика Узбекистан, Андижан, Университет, дом 129
Физико-химические исследования биоэтанола из отходов лекарственных трав THERMOPSIS ALTERNIFLORA
АННОТАЦИЯ
В статье приведены результаты физико-химического исследования биоэтанола из отходов лекарственных трав Thermopsis alterniflora. Идентифицировано химическое строение используя результаты газохромотографического анализа.
ABSTRACT
The article presents the results of a physic-chemical study of bioethanol from wastes of medical herbs Thermopsis alterniflora. The chemical structure is identified using the results of.
Ключевые слова: физико-химическое исследование, газохромотографический анализ, лекарственные травы, отход, биоэтанол.
Keywords: physic-chemical study, gasochromotography analysis, medicinal herbs, waste, bioethanol.
Для определения оптимальных условий ферментативного гидролиза твердого остатка из биомассы отхода лекарственного растения Thermopsis alterniflora исследованы различные нормы расхода ферментного комплекса с варьированием гидромодуля и времени гидролиза. Количество ферментного комплекса варьировалось от 0,1 до 0,3 г/г. а.с.в. субстрата. Варьирование гидромодуля 1:10; 1:20; 1:30 и времени гидролиза 20; 40; 60; 80; 100; 120; 140 минут температура реакционной среды (50±2)°С. Результаты ферментативного гидролиза предварительно обработанного шрота, сравнивали с результатами ферментолиза без предварительной обработки (рис.1).
Известно, что такие компоненты целлюлолитических ферментных комплексов как целлобиогидролазы и эндоглюканазы ингибируются продуктами их гидролиза – целлобиозой и глюкозой [7]. Существует предположение, что в процессе ингибирования нормальный комплекс субстрат-фермент преобразуется в неэффективный комплекс. Следовательно, при накоплении в гидролизате высокой концентрации глюкозы и целлобиозы, процессы ферментативной конверсии лигноцеллюлозы замедляются.
Рисунок 1. Ферментативного гидролиза твердого остатка при различных гидромодулях
Увеличение гидромодуля в процессе ферментативного гидролиза может способствовать повышению степени конверсии субстрата. Поэтому, для изучения влияния гидромодуля на степень конверсии при ферментативном гидролизе твердого остатка проведен ферментолиз при варьировании гидромодуля 1:10; 1:20; 1:30 (рис. 2).
Исследование влияния гидромодуля на степень конверсии при ферментативном гидролизе твердого остатка показало, что увеличение гидромодуля от 1:10 до 1:30 обеспечивает повышение степени конверсии на 12 % от а.с.в. твердого остатка. При этом максимальная степень конверсии достигается при более высокой загрузке фермента (0,3 г/г. а.с.в. субстрата) и составляет 65 % от а.с.в. субстрата.
Сбраживание ферментативного гидролизата осуществлялось в анаэробных условиях, при концентрации Saccharomyces cerevisiae не менее 30 г/л, и рН=4,5 при температуре 30 °С. По окончании процесса брожения получали зрелую бражку с содержанием спирта 2,5 – 3.0 об.%, которую отгоняли на вакуум выпарной аппарате. Полученную водно-спиртовую смесь с содержанием спирта 60-80 об.% отгоняли на ректификационной установке. Конечный продукт – этиловый спирт (94 об.%) технического назначения в количестве до 63 % от количества РВ гидролизата. Состав полученного спирта определяли с помощью газохроматографического анализа (рис. 2).
Рисунок 2. Хроматограмма полученного спирта
По физико-химическим показателям спирт, полученный из вегетативной части, соответствует содержит этанол, 1 – пропанол, 2 – метиловый и изобутиловый спирты, а также бутанол.
Выводы:
Таким образом, считается экономически целесообразным проведение предварительной обработки биомассы отхода разбавленной азотной кислотой с концентрацией 7% в течение 120 мин при 100 °С.
1. Наибольшая степень конверсии и содержание РВ в гидролизате наблюдается при обработке биомассы отхода разбавленной азотной кислотой в концентрациях 9 - 7% в течение 180 и 120 мин соответственно. С увеличением продолжительности обработки биомассы отхода разбавленной кислотой с 120 до 180 мин наблюдается незначительное повышение степени его конверсии. С точки зрения экономии целесообразно проведение предварительной обработки биомассы отхода разбавленной азотной кислотой с концентрацией 7% в течение 120 мин при 100 °С.
2. Увеличение гидромодуля от 1:10 до 1:30 обеспечивает повышение степени ферментативной конверсии твердого остатка на 12 % от а.с.в. субстрата. При этом максимальная степень конверсии достигается при более высокой загрузке фермента (0,3 г/г. а.с.в. субстрата) и составляет 65 % от а.с.в. субстрата.
3. Предварительная обработка биомассы растения способствует повышению степени ферментативной конверсии биомассы отхода на 32 % от а.с.в. субстрата по сравнению с необработанной биомассой.
4. Выход спирта составил в количестве до 63 % от массы РВ ферментативного гидролизата, что подтверждает возможности использования ферментативного гидролизата отходов, как питательной среды для получения продуктов микробиологического синтеза.
5. Гидролизат является отличным субстратом для дальнейшей микробиологической переработки с получением биотоплива и других продуктов микробиологического происхождения.
Список литературы:
- Трава термопсиса очередноцветкового ВФC 42Уз-2725-2015
- Гринкевич Н.И., Сафронич Л.Н. Химический анализ лекарственных растений: Учеб. пособие для фармацевтических вузов. М.; Высш. школа, 1983. с.3.
- Lynd, L.R., Cushman JH, Nichols R.J., Wyman, C.E. Fuel Ethanol from Cellulosic Biomass. Science, 251 (1991), 1318.
- Химия древесины / под. ред. Б.Л. Браунинга. – М.: Мир. – 1967. – 400 с.
- Холкин. Ю.И., Технология гидролизных производств: Учебник для ВУЗов. М. 1989. c..
- Великая Е. И., Суходол В. Ф. Лабораторный практикум по курсу общей тexнологии бродильных производств. 2e изд., перераб. II доп. М.: Леrкая и пищевая пром-сть, 1983. 312 с.
- Scheper Т., Tsao G. T. Recent progress in bioconversion of lignocellulosics. Springer-Verlag Berlin Heidelberg, Berlin, 1999. 280 p.
- Оболенская А.В. Лабораторные работы по химии древесины и целлюлозы / А.В. Оболенская, З.П. Ельницкая, А.А. Леонович. – М.: Экология, 1991. – 320 с.