канд. хим. наук, доцент, Каршинский государственный университет, 180103, Узбекистан, г. Карши, наб. Кучабог, д. 17
Комплексные соединения кобальта(II), меди(II) и цинка с хиназолоном-4
АННОТАЦИЯ
Синтезированы 10 новых комплексных соединений кобальта(II), меди(II) и цинка с хиназолоном-4. Проведена их идентификация. На основании химического анализа, ИК-, ЭПР- и электронной спектроскопии установлено их строение в твердом состоянии и в растворе.
ABSTRACT
10 new complexes of cobalt(II), copper(II) and zinc with quinazoline-4-ones have been synthesired. Complexes formation of cobalt’s and copper’s salts with quinazoline-4-ones has been investigated by the photometric method in the solution. The structure of synthesired complexes has been identified by IR-, ESR- and electronic spectroscopy.
Ключевые слова: кобальт, медь, цинк, ПМР-, ИК-, ЭПР-спектры, комплексных соединений, лиганд, ДМСО.
Keywords: cobalt, copper, zinc, PMR-, IR- and ESR-spectra, complexes compounds, ligand, DMSO.
Хиназолон-4, содержащий в своем составе два атома азота в цикле и карбонильный кислород, является потенциальным комплексообразующим лигандом. Для него возможны три таутомерные формы [1; 2].
Он в зависимости от природы металла К, Na, Li, Ag может образовать соли с одним или двумя из трех реакционных центров. В последнем случае образуется амбидентная система с образованием соответствующего аниона с участием О¨–¨С¨–¨N фрагмента.
При добавлении растворов солей меди(II) и цинка к раствору KHz в метаноле выделяются труднорастворимые комплексы CuХHz.2CH3OH (Х=NO3, CH3COO) ZnХHz.CH3OH (Х=NO3, Cl). Комплексы умеренно растворимы в диметилформамиде (ДМФА) и диметилсульфоксиде (ДМСО), при нагревании с водой переходят в аквакомплексы. В полученных комплексах хиназолон-4 вступает как моноосновной анион и по аналогии с калиевой солью [2], можно предположить образование ионной связи с азотом 3.
В ИК-спектрах комплексов исчезает полоса поглощения ν(NH) хиназолона-4 при 3130 см-1 в области валентных колебаний двойных связей вместо полос поглощения ν(C=O) при 1700 и ν(C=N) при 1660 см-1 хиназолона-4, в спектрах комплексов меди наблюдается одна полоса при 1618 см-1, а в спектрах комплексов цинка – широкая полоса в области 1635-1610 см-1. Можно предположить, что низкочастотное смещение полос ν(C=O) и ν(C=N) аниона хиназолона-4 является результатом координации через карбонильный кислород и атом азота 3 (связывание с азотом 1 стерически затруднено). Однако такое большое смещение (65-82 см-1) полосы ν(C=O) трудно объяснить, когда в координации участвует карбонильный кислород. Эту полосу следует отнести преимущественно к ν(C=N). Такой вариант возможен в случае миграции двойной связи карбонильной группы в цикл с образованием второй связи C=N, т. е. енола. При этом связь C=O становится одинарной и в ИК-спектрах должна появляться полоса ν(C-O). Действительно, в спектрах всех комплексов в области 1350-1360 см-1 появляется интенсивная полоса, характерная для ν(C-O), отсутствующая в спектрах хиназолона-4 и его калиевой соли. Таким образом, анион хиназолона-4 в комплексах координирован через енольный кислород депротонированной формы В.
Различие в положении полос ν(C=N) в комплексах меди и цинка обусловлено разным геометрическим строением комплексов. Комплексы меди имеют квадратно-пирамидальное, а комплексы цинка – тетраэдрическое строение, характерное для комплексов этих металлов.
Комплекс CuNO3Hz×2H2O в поликристаллическом состоянии имеет плохо разрешенный анизотропный спектр с параметрами g1=2,14, gII=2,21. Сверхтонкая структура (СТС) не разрешается. В замороженном растворе ДМСО СТС в параллельной ориентации разрешается. Определенные параметры gII=2,221, A=138 Э и g1=2,067 удовлетворительно соответствуют предложенному строению на основании ИК-данных, поскольку эти параметры соответствуют параметрам ЭПР-комплекса в поликристаллическом состоянии.
Комплекс CuCH3COOHz.2H2O в замороженном растворе ДМСО имеет параметры ЭПР gII=2,234, A=160 Э, g1=2,068. Некоторое отличие параметров нитратного и ацетатного комплексов обусловлено различием состава комплексов и подтверждает координацию ацидолиганда (NO3- и CH3COO-) с металлом [3].
Ацидолиганды (NO3-, CH3COO-, Cl-), судя по значениям электропроводности (18-25 ом-1.см2.моль-1), нерастворимости комплексов и по ИК-данным, входят в координационную сферу комплексов и координированы с металлом. Так, в спектре нитратного комплекса цинка полосы при 1290 и 830 см-1, а в спектре комплекса меди полосы при 1390 и 835 см-1 отвечают одной из двух расщепленных полос валентного колебания ν3 и внеплоскостному деформационному колебанию ν2 координированного нитратного иона соответственно [4].
Ацетатный ион в спектре CuCH3COOHz.2H2O четко не проявляет своих характеристичных полос, по-видимому, в результате перекрывания интенсивными полосами лиганда.
Молекулы воды в спектре нитратного комплекса меди показывают полосу при 3430 см-1, а в спектре ацетатного комплекса меди – полосу при 3435 см-1, отвечающие ν(OH) воды. В спектрах комплексов цинка широкая полоса с центром при 3480 см-1 отвечает ν(OH), координированной и участвующей в образовании водородных связей молекул воды [5].
В электронном спектре поглощения комплексов CuХHz.2CH3OH в ДМСО в области d-d-переходов обнаруживается одна полоса при 15500 см-1, отвечающая 2B1g→2B2g переходу квадратно-пирамидального строения [6]. Полоса поглощения лиганда смещается в высокочастотную область и обнаруживается при 29000 см-1. В спектрах комплексов ZnХHz.H2O наблюдается одна полоса координированного аниона хиназолона-4 при 29000 см-1.
В ПМР-спектре хиназолона-4 в ДМСО сигналы ароматического кольца проявляют две группы мультиплетных сигналов АВСД системы в области 7,50-8,05 и 8,18-8,33 м.д. сигнал метинной группы наблюдается в виде синглета при 8,20 м.д. Сигнал NH-группы сливается с сигналом воды, содержащейся в небольшом количестве в растворителе ДМСО. В спектре комплекса ZnClHz.H2O ароматические сигналы уширены и смещены в область 7,36-8,13 и
Таким образом, хиназолон-4 взаимодействует с солями меди(II) и цинка, замещая один анион (NO3-, CH3COO-, Cl-), и координируется бидентатно через кислород и азот 3.
При добавлении метанольного раствора калиевой соли хиназолона-4 к суспензии комплекса меди состава CuХHz.2H2O в соотношении 5:1 образуется темно-фиолетовый раствор, при выпаривании которого выделяется комплекс состава Cu(Hz)2.3H2O. Аналогично получается комплекс кобальта(II) – Co(Hz)2.4H2O. С солями цинка комплексы состава 1:2 синтезировать не удалось.
В ИК-спектрах комплексов Me(Hz)2.nH2O (Me=Cu, n=3; Co, n=4) отсутствуют полосы ν(NH) и ν(C=O) хиназолона-4. Появляются взаимоперекрывающиеся полосы поглощения в области 1645-1615 см-1, отвечающие преимущественно ν(C=N). Спектры аналогичны спектру комплекса ZnХHz.H2O. Имеется интенсивная полоса ν(C-O) около 1350 см-1, которая отсутствует в спектре хиназолона и его калиевой соли. На этом основании предлагаются следующие строения комплексов:
В ИК-спектре комплекса меди валентное колебание ν(OH) молекул воды проявляется при 3460 см-1, а в спектре комплекса кобальта – около 3400 см-1. Полоса ν(Co-O) обнаружена при 450 см-1.
Спектр ЭПР-комплекса Cu(Hz)2.3H2O в поликристаллическом состоянии представляет широкий анизотропный сигнал (∆H=220 Э) с плохо разрешенной линией анизотропии g-факторов. В растворе ДМСО разрешаются линии СТС от ионов Cu2+. Определенные параметры изотропного спектра (а=79 Э, g=2,111) соответствуют обычным спектрам меди(II) с координационным узлом из шести атомов кислорода октаэдрической конфигурации. При замораживании раствора наблюдаются хорошо разрешенные линии СТС в параллельной и перпендикулярной ориентациях. Причем в области перпендикулярной ориентации разрешаются линии СТС, соответствующие gx- и gу-факторам. Определенные параметры ЭПР (gx=2,036; C=18 Э; gу=2,076; B=15 Э; gz=2,242 и A=190 Э) хорошо согласуются с параметрами изотропного спектра, что свидетельствует о сохранении строения комплекса при замораживании раствора.
В ЭСП метанольного раствора комплекса Cu(Hz)2.3H2O обнаруживается полоса поглощения около 370 нм, что соответствует данным (360 нм), полученным при изучении комплексообразования в растворе. В ЭСП комплекса Co(Hz)2.4H2O в области d-d-переходов наблюдаются две полосы поглощения при 19000 и 17500 см-1, отвечающие 4T1g(F)→4T1g(P) и 4T1g(F) →4A2g(F) переходам соответственно октаэдрического комплекса. Этот спектр несколько отличается от спектра аналогичного комплекса, обнаруженного при изучении комплексообразования в метаноле. Некоторое отличие в положении максимума полос поглощения обусловлено различием природы растворителя (метанола и ДМСО).
Медь(II) при избытке калиевой соли хиназолона-4 в растворе образует также комплекс состава K[Cu(Hz)3.2H2O]). В ИК-спектре комплекса, в отличие от спектра комплекса Cu(Hz)2.3H2O, появляется полоса при 1700 см-1, отвечающая ν(C=O) хиназолона-4. Она, по сравнению со спектром калиевой соли, смещена в высокочастотную область на 22 см-1. На этом основании предполагаем координацию третьей молекулы хиназолона-4 через депротонированный атом азота 3 монодентатно, и строение комплекса имеет вид
В поликристаллическом состоянии комплекс имеет слабо искаженную, за счет анизотропии g-факторов, линию с параметрами g=2,05 и ∆H=79 Э. ЭПР-спектр метанольного раствора, как и ожидалось, состоит из суперпозиции линии СТС от нескольких комплексов. Определение параметров индивидуальных комплексов практически невозможно. Однако при замораживании раствора наблюдается хорошо разрешенный в параллельной и перпендикулярной ориентациях анизотропный спектр, соответствующий одному комплексу (рис. 1).
Рисунок 1. ЭПР-спектр K[Cu(Hz)3.2H2O] в метаноле при 77 К
В высоких полях наблюдается пик дополнительного поглощения, что характерно для соединений меди(II) при определенных соотношениях g1, gII-факторов. Определенные параметры (gz=2,259; A=186 Э; gy=2,074; B=15 Э; gx=2,038 и C=14 Э) несколько отличаются от параметров комплекса Cu(Hz)2.3H2O, что связано с дополнительной координацией третьей молекулы хиназолона-4 и смены растворителя ДМСО на метанол [7].
В ЭСП комплекса K[Cu(Hz)3.2H2O]) обнаруживаются полосы, соответствующие двум комплексам при 364 и 580 нм, что указывает на неустойчивость комплекса и сдвиг равновесия (3) влево. Небольшие различия в положениях максимума полос поглощения связаны с выхождением в состав комплексов в растворе молекул воды или метанола.
Таким образом, калиевая соль хиназолона-4 взаимодействует с кобальтом(II) в метаноле и образует только комплекс состава 1:2 (Co(Hz)2.4H2O), c цинком – 1:1 (ZnХHz.H2O, Х=NO3, Cl), а с медью – 1:1 (CuХHz.2H2O, Х=NO3, CH3COO), 1:2 (Cu(Hz)2.3H2O) и 1:3 (K[Cu(Hz)3.2H2O]). При этом анион хиназолона с кобальтом и цинком связывается через кислород, а с медью – через кислород или азот 3 или одновременно через эти атомы бидентатно в иминоиминольной форме. В ИК-спектрах комплексов исчезают полосы ν(NH) при 3130 см-1 и ν(С=О) при 1700 см-1 хиназолона-4. Появляется полоса ν(С-О) в области 1350-1360 см-1. В случае монодентатной координации аниона хиназолона-4 через кислород полоса ν(С=N) смещается в область 1640-1630 см-1, а в случае бидентатной координации – до 1618 см-1. Комплексы меди характеризуются спектрами ЭПР основного состояния металла – dx2-y2. Определенные параметры ЭПР подтверждают строения, предложенные на основании ИК-спектроскопических данных и электронных спектров поглощения.
Список литературы:
1. Вильямсон Т. Химия хиназолина // Гетероциклические соединения: Сб. науч. тр. / Под ред. Р.Эльдерфильда. – М.: ИЛ. 1960. Т. 6. – С. 268-311.
2. Шахидоятов Х.М. Хиназолоны-4 и их биологическая активность.-Ташкент: ФАН, 1988.–138 с.
3. Якубов Э.Ш., Мусаев З.М., Шохидоятов Х.М. Комплексные соединения биометаллов с хиназолоном-4 и его производными. / Тез. докл. Конференции молодых ученых. – Ташкент. – 1992. – С. 19.
4. Мусаев З.М., Якубов Э.Ш., Парпиев Н.А., Шохидоятов Х.М. Изучение комплексообразования хиназолона-4 с солями кобальта (II) фотометрическим методом. // Узб. хим. журн. – 1993. - № 6. – С. 18-22.
5. Singh B., Pandey R.N., Sharma D.K., Sharma U.S.Pd. & Bhanu U. Physicochemical studies on complexes of Ni (II), Pt (II), Pd (II), Sb (III) & Bi (III) with quinazoline-2-thione-4-one // Indian J. Chem., - 1981. – Vol. 20 A. – P. 1097-1100.
6. Prabhaker B., Reddy K.L., Lingaiah R. Synthesis & characterisation of Co(II), Ni(II), Cu(II), Zn(II), Ru(II), Pd(II) & Pt(II) complexes with substituted quinazoline (3H)-4-ones // Indian J. Chem. – 1989. – A 28. - № 2. – P. 140-144.
7. Куска Х. ЭПР комплексов переходных металлов. – М.: Мир. 1970. – С. 31.