кандидат химических наук, доцент кафедры химии Нижегородского государственного архитектурно-строительного университета, 603950, Россия, г. Нижний Новгород, ул. Ильинская, д.65
Продукты твердофазного термического превращения L-α-аминокислот в вакуумированной системе
АННОТАЦИЯ
На основании хромато-масс-спектрометрического анализа установлены продукты термического превращения L-α-аминокислот в вакуумированной системе и предложена схема термопревращения аминокислот.
ABSTRACT
The process of thermodecomposition of L- α-aminoacids in vacuum has been investigated. The composition of the products was identified by chromatography-mass spectrometry and the scheme of the process was suggested.
Природные L-α-аминокислоты составляют многообразие органического мира. Общее число синтетических или включенных в природные соединения аминокислот исчисляется несколькими сотнями, и их число всё время растёт. Основным источником аминокислот для человека, служит белковая пища. В химических процессах, которые идут при высокотемпературной обработке продуктов питания, возможно образование самых разнообразных веществ. Естественно возникает вопрос, какие это вещества, нет ли среди них вредных для человеческого организма, и какова должна быть длительность термообработки белковой пищи, при которой возможно образование потенциально опасных для организма соединений [4].
Другим направлением исследования аминокислот является синтез биосовместимых и биодеградируемых олигомеров и полимеров на основе аминокислот [2]. И в случае термической поликонденсации α-аминокислот необходимо знать состав продуктов термического превращения аминокислот. Для термического превращения природных L-α-аминокислот в вакуумированной системе такой информации нет. Поэтому целью нашего исследования являлось установление состава продуктов термического превращения L-α-аминокислот в вакуумированной системе.
В качестве объектов исследования выбраны L-α-аминокислоты, содержащие в составе R радикалы алифатического ряда (глицин, аланин, валин, лейцин, изолейцин), ароматического ряда (фенилаланин, тирозин), ОН – группу (серин, треонин), СООН – группу (аспарагиновая, глутаминовая кислота), NH2CO – группу (аспарагин, глутамин), аминогруппу (лизин, аргинин), серосодержащие (метионин, цистеин, цистин) и азотсодержащие гетероциклы (пролин, гистидин, триптофан).
L-a-Аминокислоты – гетерофункциональные соединения, молекулы которых содержат одновременно амино- и карбоксильную группу у одного и того же a-углеродного атома. Это бесцветные кристаллы, растворимые в воде, некоторые из них слегка растворимы в этаноле, метаноле, ацетоне и нерастворимы в большинстве других растворителей. Все a-аминокислоты, за исключением глицина, проявляют оптическую активность, благодаря наличию хирального атома углерода. Такие молекулы несовместимы со своим зеркальным отражением любой комбинацией вращений и перемещений в трёхмерном пространстве [7,8]. Хиральные молекулы существуют в виде пар энантиомеров, различающихся только знаком оптического вращения, которое связано с их конфигурацией. Oни принадлежат либо к L-ряду (левовращающие), либо к D-ряду (правовращающие).
Молекулы аминокислот в кристаллическом состоянии и в растворе находятся в цвиттер ионной форме [3]:
NH2–CH(R)COOH ⇄ N+H3–CH(R)COO-
Незаряженная форма (I) легко переходит в цвиттер-ион (II), что связано с выигрышем свободной энергии в 44,8 – 51,5 кДж/моль. Известно, что в вышеуказанном равновесии практически существует только цвиттер-ион (II). Например, для аланина соотношение (II):(I) = 260 000. Форма I существует в незначительном количестве в водных растворах. Помимо того, она присутствует в парах при сублимации аминокислот при высоких температурах. Например, в случае глицина соединение I было выделено вымораживанием на аргоновой матрице при 20К.
Растворы аминокислот в воде проявляют буферные свойства в результате существования равновесия:
В твердом состоянии цвиттер-ионы аминокислоты образуют молекулярный кристалл с сильными водородными связями. Это объясняет довольно большие дипольные моменты аминокислот и дипептидов, их растворимость в воде, высокие температуры плавления. Цвиттер-ионная структура аминокислот подтверждается также полосой поглощения 1610-1550 см -1 в ИК-спектре твердой аминокислоты или ее раствора [1]. Структура кристаллических аминокислот и природа водородных связей в них обусловлена электронным строением их молекул, которые имеют значительные по величине эффективные заряды на группах СОО- и +NH3.
Плавление кристаллических аминокислот сопровождается их разложением. Мы обратили внимание, что температура газовыделения летучих продуктов (Тгаз.) при нагревании аминокислот в вакуумированной системе существенно ниже температуры, которая фиксируется как температура плавления (Тпл.) вещества [3]. Температура плавления (Тпл.) и температура газовыделения (Тгаз.) при нагревании аминокислот представлены в таблице 1. Это позволило выбрать температурные интервалы для определения состава продуктов термопревращения. Продукты твердофазного термического превращения аминокислот представлены в таблице 2.
Таблица 1.
Температура плавления (Тпл.) и температура газовыделения (Тгаз.) при нагревании аминокислот
Аминокислота | Тпл.(с разл.) [3],оС | Тгаз,.оС |
Глицин (Gly) | 232-236 | 210 |
Аланин (Аla) | 315-316 | 240 |
Валин (Val) | 315 | 270 |
Лейцин (Leu) | 293-295 | 270 |
Изолейцин (Ile) | 285-286 | 270 |
Серин (Ser) | 228 | 200 |
Треонин (Thr) | 253 | 227 |
Аспарагиновая кислота (Asp) | 270 | 190 |
Глутаминовая кислота (Glu) | 247 – 249 | 170 |
Аспарагин (Asn) | 220 | 190 |
Глутамин (Gln) | 184 | 160 |
Лизин (Lys) | 224 | 200 |
Аргинин (Arg) | 244 | 200 |
Метионин (Met) | 281 | 210 |
Цистеин (Cys) | 240 | 190 |
Цистин (Cys2) | 260 | 200 |
Фенилаланин (Phе) | 283 | 245 |
Тирозин (Tyr) | 344 | 268 |
Триптофан (Trp) | 293 – 295 | 240 |
Гистидин (His) | 287 – 288 | 230 |
Пролин (Pro) | 220 – 222 | 200 |
Таблица 2.
Продукты твердофазного термического превращения аминокислот
Продукты термического превращения | Аминокислота |
Углекислый газ | глицин, аланин, валин, лейцин, изолейцин, фенилаланин, тирозин, серин, треонин, аргинин, триптофан, гистидин, пролин, метионин, цистеин, цистин, аспарагиновая кислота, аспарагин |
Аммиак | глицин, валин, аргинин, лизин, триптофан, гистидин, пролин, аспарагин, глутамин |
Дикетопиперазин и его производные | глицин, аланин, валин, лейцин, изолейцин, пролин |
Вода | глицин, аргинин, лизин, триптофан, гистидин, пролин, глутаминовая кислота, аспарагиновая кислота, аспарагин, глутамин |
Гетероциклические соединения с азотом или серой | глицин, аланин, валин, лейцин, изолейцин, фенилаланин, триптофан, гистидин, пролин, метионин, цистеин, цистин |
Сероводород, метилмеркаптан, дисульфид | метионин, цистеин, цистин |
Амины | валина, лейцина, глицина, метионин, аргинин, лизин |
Амиды, уксусная кислота | глицин |
Низкомолекулярные олигомеры | глицин, аргинин, лизин, триптофан, гистидин, пролин, метионин, цистеин, цистин, аспарагиновая кислота, глутаминовая кислота, аспарагин, глутамин |
Мы предполагаем, что причиной термического превращения аминокислот (глицин, аланин, валин, лейцин, изолейцин, пролин) в твердой фазе задолго до плавления кристаллов служит положение цвиттер-ионов в узлах кристаллической решетки. Электронейтральные цвиттер-ионы, несущие положительный и отрицательный заряды, локализованные на разных атомах, расположены в узлах кристаллической решетки подобно ионному кристаллу. Чем больше дипольный момент цвиттер-иона, тем больше энергия электромагнитного взаимодействия между цвиттер-ионами, тем выше скорость гетеролитической реакции конденсации, сопровождающейся образованием олигопептидов и отщеплением воды. Фактически кристалл аминокислоты – это единая система, в которой реакции конденсации происходят во всем объеме твердой фазы.
В зависимости от относительного положения цвиттер-ионов возможны реакции конденсации с образованием как линейных олигопептидов, так и циклических дипептидов. Для аминокислот глицин, аланин, валин, лейцин, изолейцин и пролин были найдены производные дикетопиперазина. Для глицина, аргинина, лизина, триптофана, гистидина, пролина, метионина, цистеина, цистина, аспарагиновой кислоты, глутаминовой кислоты, аспарагина, глутамина обнаружены низкомолекулярные олигомеры.
Реакции поликонденсации с образованием олигопептидов и циклов выражены в общей схеме:
Параллельно аминокислоты участвуют в реакциях декарбоксилирования и деаминирования:
При ином относительном расположении цвиттер-ионов в кристалле происходит, как мы установили при анализе продуктов реакции, образование циклических дипептидов:
замещенный 2,5-пиперазиндион
ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ
Для выделения газообразных продуктов использовалась установка, описанная ранее [5,6]. В масс-спектрометрическую ампулу помещался стеклянный капилляр, содержащий 50-100 мг исследуемой кристаллической аминокислоты. Из ампулы откачивался воздух до давления 10 Па, она отпаивалась от вакуумной системы и помещалась в термостат при температуре опыта. После 1–3 часов выдержки в термостате ампулу извлекали из термостата, охлаждали до комнатной температуры и в отросток ампулы с разбиваемым кончиком помещался металлический боек. Отросток ампулы соединялся с вакуумной системой. После откачки промежуточных линий до давления 10 Па, соединительные линии заполнялись гелием, кончик ампулы разбивался при падении на него бойка, и ампула заполнялась гелием высокой чистоты марки М (99.9999%) до давления 1,5 атм. Для равномерного распределения продуктов реакции по объему ампулы она выдерживалась сутки при комнатной температуре. Заполненная гелием ампула через отвод фторопластового крана гибким шлангом подсоединялась к вакуумной системе через стеклянный корпус фторопластового крана, в котором вместо штока установлена прокалываемая резиновая пробка. Пробка прокалывалась иглой одноразового шприца объемом 2 мл. После откачки до давления 10 Па плавно открывался фторопластовый кран и под давлением смеси гелия и продуктов распада аминокислот шток шприца приходил в движение. По достижении торцом штока отметки 1 мл игла шприца удалялась из пробки, и шприц с образцом транспортировался к хромато-масс-спектрометру.
Состав газообразных продуктов реакции идентифицировали на хромато-масс-спектрометре TraceGCUltra/DSQII. Для идентификации летучих продуктов, имеющих низкую упругость пара при комнатной температуре, проводилось вскрытие ампулы, введение в нее жидкого растворителя и последующего анализа полученного раствора путем введения жидких проб в инжектор хромато-масс-спектрометра. Использовалась капиллярная колонка TR 5 MS длиной 30 м и диаметром 0,25 мм. Исходя из свойств анализируемых образцов, были выбраны следующие условия регистрации хромато-масс-спектрограмм: температура инжектора-200-250 0С; скорость газа-носителя – 1 мл/мин, спллит потоков- 1/50. Температура колонки повышалась от 60 до 2500С со скоростью 100 в минуту. Регистрировались масс-хроматограммы положительных ионов в диапазоне массовых чисел 12-200 (для определения содержания легких газов) и 35-300 (для остальных летучих продуктов). Идентификация компонентов смеси осуществлялась путем сравнения их масс-спектров с масс-спектрами электронной библиотеки NIST 2005.
Для обнаружения характеристических частот валентных колебаний твердых продуктов поликонденсации применяли спектрофотометр марки Shimadzu IR-Prestige-21/FTIR-8400S. Анализ полимеров методом времяпролетной МАLDI MS проводили на приборе Bruker Microflex LT в линейном режиме.
Таким образом, описана методика определения продуктов термического превращения L-аминокислот в вакууме. Впервые установлен состав продуктов термопревращения L-аминокислот в твердой фазе. На основании анализа продуктов предложена схема превращения L-аминокислот в вакуумированной системе.
Список литературы:
1. Беллами Л. Новые данные по ИК-спектрам сложных молекул/ Л. Беллами. – ИЛ. Мир, 1971. – 320 с.
2. Власов Г.П. Биодеградируемые полимеры на основе полипептидов и белков / Власов Г.П. // Экология и промышленность России – 2010 – №5 – С. 67-71.
3. Гринштейн Дж. Химия аминокислот и пептидов/ Дж. Гринштейн, М. Винниц, под ред. М.М. Шемякина – М.: Мир, 1965. – 821 с.
4. Прозоровский В.Б. Тормозные аминокислоты / В.Б. Прозоровский // Химия и жизнь – ХХI век. – 2006. – №7. – С. 46–49. Возбуждающие аминокислоты.– 2006 – №10. – С. 34-37.
5. Яблоков В.А, Васина Я.А., Зеляев И.А., Митрофанова С.В. Кинетика серусодержащих аминокислот //Журн. общ. хим. 2009. Т. 79. Вып.6. С. 969.
6. Яблоков В.А. Исследование термической стабильности глицина, аланина и серина / В.А. Яблоков, И.Л. Смельцова, И.А. Зеляев, С.В. Митрофанова // Журн. общей химии. – 2009. – Т. 79. №.8. – С. 1344–1346.
7. Якубке Х.-Д. Аминокислоты. Пептиды. Белки/ Х.-Д. Якубке, Х Ешкайт. – М.: Мир, 1985. – 82 с.
8. Sober H.A. Handbook of Biochemistry; Selected Data for Molecular Biology Chemical Rubber Co., Cleveland, Ohio, 1970, section B.