GAS CHROMATOGRAPHIC ANALYSIS OF THE PYROLYSIS DISTILLATE FRACTION ISOLATED AT 190°C THROUGH A RASCHIG RING PACKING

ГАЗОХРОМАТОГРАФИЧЕСКИЙ АНАЛИЗ ФРАКЦИИ, ВЫДЕЛЕННОЙ ПРИ 190 oС ЧЕРЕЗ НАСАДКУ РАШИГА ПИРОЛИЗНОГО ДИСТИЛЛЯТА
Цитировать:
Valieva Sh.Sh., Yusupova L.A., Urazov F.B. GAS CHROMATOGRAPHIC ANALYSIS OF THE PYROLYSIS DISTILLATE FRACTION ISOLATED AT 190°C THROUGH A RASCHIG RING PACKING // Universum: химия и биология : электрон. научн. журн. 2025. 1(139). URL: https://7universum.com/ru/nature/archive/item/21643 (дата обращения: 10.01.2026).
Прочитать статью:

 

ABSTRACT

A pyrolysis distillate was fractionated at 190 °C using a laboratory-scale distillation column packed with glass Raschig rings, providing stable vapor–liquid contact under atmospheric pressure. The collected fraction was subsequently characterized by gas chromatography–mass spectrometry (GC–MS) to determine its chemical composition. The analysis revealed that the fraction is predominantly composed of aromatic and polyaromatic compounds, with indene, naphthalene, azulene, and their derivatives as the main constituents. Quantitative evaluation indicated a significant contribution of C₁₀ compounds, demonstrating the enrichment of medium-boiling aromatic species. The results confirm the suitability of Raschig ring packing for the controlled fractionation of pyrolysis distillates and highlight the potential of the obtained fraction for further use as a chemical feedstock or intermediate for value-added products.

АННОТАЦИЯ

Пиролизный дистиллят был фракционирован при температуре 190 °C с использованием лабораторной ректификационной колонны, заполненной стеклянной насадкой в виде колец Рашига, что обеспечило стабильный контакт пар–жидкость при атмосферном давлении. Полученная фракция была охарактеризована методом газовой хроматографии–масс-спектрометрии (ГХ–МС) с целью определения ее химического состава. Результаты анализа показали, что фракция преимущественно состоит из ароматических и полиароматических соединений, основными компонентами которых являются инден, нафталин, азулен и их производные. Количественная оценка выявила значительную долю соединений состава C₁₀, что свидетельствует об обогащении фракции среднекипящими ароматическими компонентами. Полученные результаты подтверждают эффективность применения насадки колец Рашига для контролируемого фракционирования пиролизных дистиллятов и указывают на перспективность использования выделенной фракции в качестве химического сырья или промежуточного продукта для получения материалов с добавленной стоимостью.

 

Keywords: Pyrolysis distillate, raschig ring packing, fractionation, gas chromatography–mass spectrometry, hydrocarbons, C₁₀ fraction

Ключевые слова: Пиролизный дистиллят, насадка кольца Рашига, фракционирование, газовая хроматография–масс-спектрометрия, углеводороды, фракция C₁₀.

 

Introduction

Pyrolysis distillates represent a complex mixture of hydrocarbons formed during the thermal decomposition of polymeric and heavy hydrocarbon feedstocks [1]. Due to their wide boiling range and heterogeneous composition, effective fractionation and detailed compositional analysis of pyrolysis-derived products are essential for their rational utilization as fuels, chemical feedstocks, or functional additives [2]. In this context, distillation-based separation combined with advanced analytical techniques plays a key role in understanding the chemical nature of individual fractions [3].

Packed columns equipped with Raschig ring packing are widely applied in laboratory-scale fractionation due to their simple design, chemical inertness, and ability to provide efficient vapor–liquid contact with relatively low pressure drop [4]. The use of glass Raschig rings is particularly advantageous when separating thermally sensitive pyrolysis products, as they minimize secondary reactions and contamination while ensuring stable separation conditions. Fractionation at controlled temperatures allows the isolation of narrow boiling fractions suitable for subsequent analytical characterization [5].

Gas chromatography (GC) is one of the most powerful and reliable methods for analyzing complex hydrocarbon mixtures, enabling the identification and semi-quantitative determination of individual components within distillate fractions [6]. GC analysis provides valuable insight into the distribution of paraffinic, olefinic, naphthenic, and aromatic hydrocarbons, which directly influences the physicochemical properties and potential applications of the obtained fractions [7-8].

In the present study, a pyrolysis distillate was fractionated at 190 °C using a laboratory column packed with glass Raschig rings, and the isolated fraction was subjected to gas chromatographic analysis. The aim of this work is to characterize the chemical composition of the 190 °C fraction and to evaluate the effectiveness of Raschig ring packing for the controlled separation of pyrolysis distillates under laboratory conditions [9].

Material and methods

Materials

The pyrolysis distillate used in this study was obtained from the thermal decomposition of hydrocarbon-based feedstock under controlled pyrolysis conditions. Prior to fractionation, the distillate was filtered to remove suspended solid impurities and stored in sealed glass containers to prevent evaporation and oxidative degradation.

Glass Raschig rings were employed as the column packing material. The rings were chemically inert, cylindrical in shape, and characterized by a height-to-diameter ratio of approximately 1:1, ensuring effective vapor–liquid contact during the fractionation process.

Analytical-grade carrier gases and calibration standards were used for gas chromatographic analysis. All reagents and solvents applied in the analytical procedures were of chromatographic or analytical purity.

Fractionation Procedure

Fractionation of the pyrolysis distillate was carried out using a laboratory-scale distillation column packed with glass Raschig rings. The packed section provided an extended contact surface between the rising vapors and descending condensate, enabling efficient separation of the distillate components.

The distillation process was conducted under atmospheric pressure. The distillate was gradually heated, and the fraction corresponding to a vapor temperature of 190 °C was collected after thermal stabilization of the system. The collected fraction was allowed to cool to ambient temperature and subsequently stored in airtight glass vials prior to chromatographic analysis.

GC-MS Analysis

Mass chromatographic analysis of the 190 °C fraction was performed using a gas chromatograph equipped with a flame ionization detector (FID). Separation was achieved on a capillary column suitable for hydrocarbon analysis.

The carrier gas was supplied at a constant flow rate, and the injector was operated in split mode. The oven temperature program was optimized to ensure effective separation of light and medium hydrocarbon components. Detector and injector temperatures were maintained at levels sufficient to prevent condensation of high-boiling compounds.

Chromatograms were processed using dedicated chromatographic software. Individual components were identified based on their retention times by comparison with reference standards and literature data. Semi-quantitative analysis was performed using peak area normalization.

Result and discussion

To evaluate the chemical composition of the fraction obtained at 190 °C by fractionation of the pyrolysis distillate using a column packed with Raschig rings, gas chromatography–mass spectrometry (GC–MS) analysis was performed. The analysis enabled the identification of individual hydrocarbon components and provided insight into the distribution of compound classes present in the selected fraction. The obtained GC–MS results are presented in Figure 1, illustrating the chromatographic profile and corresponding mass spectral information of the 190 °C fraction.

 

Figure 1. GC–MS chromatogram of the pyrolysis distillate fraction obtained at 190 °C using a Raschig ring packed column

 

Table 1.

GC–MS analysis of the pyrolysis distillate fraction obtained at 190 °C

No.

Retention time, min

Content, %

Compound

Molecular formula

1

1.329

0.27

Benzene

C₆H₆

2

4.183

0.21

Benzonitrile

C₇H₅N

3

6.674

0.45

4-Methylbenzonitrile

C₈H₇N

4

6.756

0.23

1H-Indene

C₉H₈

5

7.415

0.31

3,4-Dihydro-1(2H)-naphthalenone

C₁₀H₁₀O

6

7.524

1.15

1H-Indene

C₉H₈

7

7.760

0.83

1H-Indene

C₉H₈

8

8.084

11.04

1,8-Naphthosultone

C₁₀H₆O₃S

9

8.199

0.61

Isopropenylbenzene

C₉H₁₀

10

8.239

0.45

3-Pyridinecarbonitrile

C₆H₄N₂

11

8.320

0.75

2-Phenylpropenal

C₉H₈O

12

8.455

1.54

1-Methyl-2,3-dihydroindene

C₁₀H₁₂

13

8.512

0.27

1-Butynylbenzene

C₁₀H₈

14

8.648

0.34

2-Phenylpropenal

C₉H₈O

15

8.723

0.43

1,4-Dihydro-1,4-epoxynaphthalene

C₁₀H₈O

16

8.973

1.43

Allylbenzene

C₉H₁₀

17

9.023

1.41

2-Methyl-1-propenylbenzene

C₁₀H₁₂

18

9.070

0.83

1,2-Benzenedicarbonitrile

C₈H₄N₂

19

9.207

3.78

1-Phenyl-2-ethylnitrile

C₉H₉N

20

9.300

0.81

1-Methylindene

C₁₀H₁₀

21

9.372

0.48

Benzimidazole

C₇H₆N₂

22

9.483

1.23

Malononitrile derivative

C₁₀H₆N₄O₄

23

9.557

0.31

1-Methylindene

C₁₀H₁₀

24

9.629

0.57

1H-Indene

C₉H₈

25

9.750

0.89

N-Methylbenzimidoyl chloride

C₈H₇ClN₂

26

9.900

0.51

Sulfonyl butadiene derivative

C₁₁H₁₁O₂S

27

10.035

1.90

Butenylbenzene

C₁₀H₁₂

28

10.177

4.22

Methoxy-isocyanobenzene

C₈H₇NO

29

10.293

0.77

Tetrahydro-β-naphthyl acetate

C₁₂H₁₄O₂

30

10.459

1.16

1-Methylindene

C₁₀H₁₀

31

10.482

0.65

N-Prop-2-ynylaniline

C₉H₉N

32

10.553

1.71

Benzene

C₆H₆

33

10.676

2.85

1H-Indene

C₉H₈

34

10.763

0.99

Methylthiourea

C₂H₆N₂S

35

11.019

13.91

1-Naphthalenol

C₁₀H₈O

36

11.152

5.68

Azulene

C₁₀H₈

37

11.208

4.75

1,2-Benzenedicarbonitrile

C₈H₄N₂

38

11.399

4.00

Naphthalene

C₁₀H₈

39

11.450

0.64

5-Phenyl-1H-tetrazole

C₇H₆N₄

40

11.568

1.24

Methoxyethynylbenzene

C₉H₈O

41

12.025

16.96

Naphthyl-pyridinone derivative

C₁₆H₁₁NO₂

42

12.069

0.77

Trimethylvinylbenzene

C₁₁H₁₄

43

12.196

0.49

Isopropenylbenzene

C₉H₁₀

44

12.358

1.59

3-Methylbenzofuran

C₉H₈O

45

12.413

0.97

Isopropenylmethylbenzene

C₁₀H₁₂

46

12.666

0.81

p-Vinylbenzamide

C₉H₉NO

47

13.258

0.24

1,4-Naphthalenedione

C₁₀H₆O₂

48

13.309

0.42

(3-Methoxyphenyl) acetonitrile

C₉H₉NO

49

13.692

0.45

1-Ethylindole

C₁₀H₁₁N

50

14.048

0.32

Halogenated naphthalene

C₁₀H₇X

51

14.518

0.46

1-Methylindan-2-one

C₁₀H₁₀O

52

14.841

0.66

Thieno[2,3-b]thiophene

C₆H₄S₂

53

15.268

0.28

Azidonaphthalene

C₁₀H₇N₃

 

GC–MS analysis of the fraction obtained at 190 °C using a Raschig ring packed column revealed a complex mixture dominated by aromatic and polyaromatic compounds. The identified components mainly include indene, naphthalene, azulene, and their oxygen- and nitrogen-containing derivatives, indicating the prevalence of medium-boiling aromatic species in the fraction. The presence of substituted aromatics and heteroatom-containing compounds reflects the typical chemical transformation pathways occurring during pyrolysis and confirms the effectiveness of the Raschig ring packing in achieving controlled fractionation under laboratory conditions.

From the identified compounds, the C₁₀ fractions were separated for quantitative evaluation, and the calculated results are presented in Table 2.

Table 2.

C₁₀ compounds identified in the 190 °C pyrolysis distillate fraction (GC–MS analysis)

No.

Compound

Molecular formula

Content, %

1

3,4-Dihydro-1(2H)-naphthalenone

C₁₀H₁₀O

0.31

2

1-Methyl-2,3-dihydroindene

C₁₀H₁₂

1.54

3

1,4-Dihydro-1,4-epoxynaphthalene

C₁₀H₈O

0.43

4

2-Methyl-1-propenylbenzene

C₁₀H₁₂

1.41

5

1-Methylindene

C₁₀H₁₀

0.81

6

1-Methylindene

C₁₀H₁₀

0.31

7

Butenylbenzene

C₁₀H₁₂

1.90

8

1-Methylindene

C₁₀H₁₀

1.16

9

Alkylated indene (C₁₀ isomer)

C₁₀H₁₀

2.85

10

1-Naphthalenol

C₁₀H₈O

13.91

11

Azulene

C₁₀H₈

5.68

12

Naphthalene

C₁₀H₈

4.00

13

1,4-Naphthalenedione

C₁₀H₆O₂

0.24

14

Halogenated naphthalene

C₁₀H₇X

0.32

15

1-Methylindan-2-one

C₁₀H₁₀O

0.46

16

Azidonaphthalene

C₁₀H₇N₃

0.28

 

According to the data presented in Table 2, the total content of C₁₀ compounds in the fraction obtained at 190 °C using a Raschig ring packed column reaches 46.41%, indicating that this fraction is predominantly enriched with medium-boiling aromatic components.

The C₁₀ fraction is mainly composed of naphthalene and its derivatives, including 1-naphthalenol (13.91%), naphthalene (4.00%), azulene (5.68%), and 1,4-naphthalenedione (0.24%), which together confirm the dominance of condensed aromatic structures. In addition, indene and alkyl-substituted indene derivatives (approximately 8.5% in total) were detected, suggesting that cyclization and re-aromatization reactions actively occurred during the pyrolysis process.

The presence of oxygen- and nitrogen-containing C₁₀ compounds, such as naphthalenol, naphthalene dione, and azonaphthalene, reflects the complex chemical nature of the pyrolysis distillate and indicates that the fractionation was carried out under relatively mild conditions, limiting excessive thermal degradation. Overall, the obtained results demonstrate that the use of Raschig ring packing enables effective separation and concentration of C₁₀ aromatic fractions from pyrolysis distillates under laboratory conditions.

Conclusion

In this study, a pyrolysis distillate was successfully fractionated using a laboratory column packed with Raschig rings, and the fraction collected at 190 °C was systematically characterized by GC–MS analysis. The results demonstrated that the selected fraction is dominated by aromatic and polyaromatic compounds, confirming the effectiveness of the applied packing in providing stable vapor–liquid contact and controlled separation.

Quantitative evaluation revealed that C₁₀ compounds constitute 46.41% of the 190 °C fraction, with naphthalene, azulene, indene, and their derivatives being the major components. The presence of oxygen- and nitrogen-containing C₁₀ species further reflects the complex chemical nature of pyrolysis products and indicates that fractionation was achieved without excessive secondary thermal degradation.

Overall, the findings confirm that Raschig ring packed columns are suitable for the selective isolation of medium-boiling aromatic fractions from pyrolysis distillates under laboratory conditions. The obtained C₁₀-rich fraction shows potential for further utilization as a chemical feedstock, solvent component, or intermediate for value-added products, supporting the rational upgrading of pyrolysis-derived materials.

 

References:

  1. Wang B., Song Y.-B., Wang F., Fan Y.-C., Cheng N., Duan P.-G. Comparative study on properties of waste tyre pyrolysis oil and its distillates obtained by molecular distillation. Journal of Analytical and Applied Pyrolysis, 2025, 188, 107046.
  2. Zhang X., Xie Y., Wang H., Wang L., Tao G., Ji H. Influence of distillates (petroleum) on microcrystalline cellulose pyrolysis. Journal of Analytical and Applied Pyrolysis, 2023, 170, 105878.
  3. Zhan, Y., Ji G., Ullah F., Li A. Polyoxometalate catalyzed oxidative desulfurization of diesel range distillates from waste tire pyrolysis oil. Journal of Cleaner Production, 2023, 389, 136038.
  4. Barbero-López A., Chibily S., Tomppo L., Salami A., Ancin-Murguzur F. J., Venäläinen M., Lappalainen R., Haapala A. Pyrolysis distillates from tree bark and fibre hemp inhibit the growth of wood-decaying fungi. Industrial Crops and Products, 2019, 129, 604–610.
  5. Wang F., Tian Y., Zhang C.-C., Xu Y.-P., Duan P.-G. Hydrotreatment of bio-oil distillates produced from pyrolysis and hydrothermal liquefaction of duckweed: A comparison study. Science of The Total Environment, 2018, 636, 953–962.
  6. Brueckner T. M., Hawboldt K. A., Pickup P. G. Electrolysis of pyrolysis oil distillates and permeates in a multi-anode proton exchange membrane cell. Applied Catalysis B: Environmental, 2019, 256, 117892.
  7. Olarte M. V., Padmaperuma A. B., Ferrell J. R., Christensen E. D., Hallen R. T., Lucke R. B., Burton S. D., Lemmon T. L., Swita M. S., Fioroni G., Elliott D. C., Drennan C. Characterization of upgraded fast pyrolysis oak oil distillate fractions from sulfided and non-sulfided catalytic hydrotreating. Fuel, 2017, 202, 620–630.
  8. Suleman F., Muhbat S., Uddin F., Hashmi S., Borhan A., Ahmad F., Ahmad N. Influence of co-pyrolysis temperature on the characteristics of diesel-like fuel produced from waste frying and engine oils. Journal of Analytical and Applied Pyrolysis, 2025, 193(Part 1), 107352.
  9. Dammann M., Hüsing F., Santo U., Böning D., Mancini M., Kolb T. Characterisation of beech wood pyrolysis oil: Chemical and physical properties and decomposition kinetics. Fuel, 2025, 404(Part A), 134897.
Информация об авторах

Basic doctoral student, Tashkent Institute of Chemical Technology, Uzbekistan, Tashkent

базовый докторант, Ташкентский химико-технологический институт, Узбекистан, г. Ташкент

Dean of the Faculty of Oil and Gas, Tashkent Institute of Chemical Technology, Uzbekistan, Tashkent

декан факультета нефти и газа, Ташкентский химико-технологический институт, Узбекистан, г. Ташкент

Senior Lecturer, Tashkent Institute of Chemical Technology, Uzbekistan, Tashkent

старший преподаватель, Ташкентский химико-технологический институт, Узбекистан, г. Ташкент

Журнал зарегистрирован Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор), регистрационный номер ЭЛ №ФС77-55878 от 17.06.2013
Учредитель журнала - ООО «МЦНО»
Главный редактор - Ларионов Максим Викторович.
Top