Turabekova D., Khujamshukurov N., Salomova S. GROWTH DYNAMICS OF Fusarium proliferatum IN DIFFERENT NUTRIENT MEDIA ISOLATED FROM GRAPEVINE // Universum: химия и биология : электрон. научн. журн. 2022. 11(101). URL: (дата обращения: 28.05.2023).
Прочитать статью:
DOI - 10.32743/UniChem.2022.101.11.14429



The article studied the release of mycotoxin and the growth dynamics of the fungus Fusarium proliferatum on various nutrient media, isolated from the varieties of Rizamat ota and Husaini from farm "Alijon Kuvonchbek bogi" Syrdarya region.


В статье изучена выделения микотоксина и динамика роста гриба Fusarium proliferatum на различных питательных средах, выделенного из сортов Ризамат ота и Хусайни фермерского хозяйства «Алижон Кувончбек боги» Сырдарьинской области.


Keywords: Fusarium proliferatum, mycotoxin, Chapeka Dox, Sabouraud Agar, Mendels, Potato Dextrose Agar, growth dynamics.

Ключевые слова: Fusarium proliferatum, микотоксин, Чапека Докса, Сабуро, Мендельс, КГА динамика роста.


Introduction. Grapes are an important plant in the agriculture of Uzbekistan. In 2021 the country's farms grow grapes on 90,000 hectares, 900,000 people are employed in permanent and seasonal employment, 52,000 hectares of new vineyards have been created over the past four years and 210 billion soums of subsidies have been allocated, and the share of grapes has doubled.  To this end, we reviewed the extent to which Fusarium proliferatum has been studied in different countries based on the literature. Fusarium proliferatum causes Fusarium wilt or root rot in many plants. But the fungus has the ability to produce various mycotoxins. That is why scientists around the world are studying this mushroom on a large scale.

In particular, Pakistani scientists studied root rot in 120 specimens of grapes, 30 of which showed a typical appearance of the fungus Fusarium proliferatum (Fig. 1) [20, p.85-88]. When the potato-dextrose agar (KDA) is grown at a temperature of 25ºC, it initially turns white, cotton-colored (Fig. 2), purple and dark purple with increasing duration of cultivation, their macroconidia are thin, thin-walled cell wall 3 divided into up to 5 fragments, the size of the curved apical cell ranges from 20.9 to 45.2 × 3.2-7.1 μm, the microconidia are thin-layered, resembling aseptic particles and have a textured appearance, from 4.5 to 11.2 × Found to be between 2.3–4.1 μm (Fig. 3) [20, p.85-88].

Figure 1. White-purple fungus growing on the top of the vine [Salman et al. 2018]

Figure 2. Fusarium proliferatum colony on potato-dextrose agar

Figure 3. Microscopic view of Fusarium proliferatum. ×400


We also studied the production of mycotoxins by the fungus Fusarium proliferatum on the basis of literature data. It has now been established that the fungus produces various mycotoxins. These mycotoxins have a major impact on food safety worldwide. Previously, Fusarium proliferatum was confused with morphologically related species. Now it is easy to separate using morphological and DNA analysis. It is widely distributed and has many hosts worldwide, releasing the mycotoxins Bauervoin, Fumonisin, Fusaproliferin, Fusaric acid, Fusarin, and Moniliformin [19, p.556]. Stuart P. Falk et al. studied the antimicrobial effects of Fusarium proliferatum G6 microconidia suspensions [22, p.1010-1017]. Israeli scientists isolated the cold-resistant G6 strain of mycoparasite Fusarium proliferatum using ultraviolet light. Fusarium species Plasmopara viticola, unsuitable for growth, showed 2-3 times faster growth than the parent strain when grown under easy growth conditions, i.e. at 13° C., when the isolated strain (designated as 1505) was grown. This rapid growth harvested (improved) the biological control of  P.viticola found in leaf analysis [23, p.1062-1068]. From this it can be concluded that the mycotoxin produced by Fusarium can easily control P.viticola.

In 2012, Slovak scientists Zuzana Mašková et al. studied the type. In this case, F. proliferatum ranked high among the 11 most toxic species. Toxicity of these fungi was determined using chromatography (tonkosloynoy chromatografii). Tests have shown that F. proliferatum produces 100% of diacetoxistirpenol, NT-2 and T-2 toxins, 73% of NT-2 toxin and 50% of zearalenone [29, p.256-258].

The fungus produces different toxins according to the nutrient environment. Among the Slovak grapes, toxins of the genus Fusarium, among other fungi, F.proliferatum Chapeka yeast autolysate agar and sucrose and yeast extract agar (na agare s avtolizatom drojjey Chapeka i agare s drojjevym 3 to 400 kg of borax extract from 400 kg of sucrose) , 49850 to 259,500 μg / kg. The presence of boveritsin 2.24 mcg / kg, fumonizine B1 and fumonizine B2 in dried fruit from 500 to 2040 mcg / kg was noted [14, p.97-102.]. Polish scientists studied the formation of fumonizine (FB1 and FB2), moniliformine (MON) and ergosterol (ERG) in the fungi Fusarium oxysporum and Fusarium proliferatum, as well as the effect of temperature on the formation of mycotoxins. Fusarium proliferatum at 18 ° C was 720.0–1976.6 μg / g for FB1, 74.2–670.8 μg / g for FB2, and F. oxysporum had very low FB1 - 0.02–4 in 3 of 4 strains. 77 μg / g and FB2 0.02–2.15 μg / g of fumonizine were formed [26, p.608-615].

According to, in China [27], [28], [7], [25, P.2306-2313], [2, p.1528], in Brazil [11], in Italy [5, р.37-46], in Russia [12], [30, с.160], in India [17], [13, р.704], in USA [15, p.1009], [18, р.2102-2110], [3, р.550], [24, р.1526], [8, р.1931-1939], [21, р.909], [9, р.843], in Argentina [6, р.1405], [19], in Oman [1, р.284], in Tunisia [10, р.1217], in Switzerland [4, p.1010-1017] was studied microbiological, cultural, biochemical, molecular genetic properties of the fungus.

Savchuk N.V. in her dissertation [30, с.160] identified F.proliferatum, belonging to the genus Fusarium, causing the formation of Fusarium desiccation in grape plants, and developed an environmentally complex method of control through a comprehensive assessment of damage.

Falk S.P. and others in 1998 [4, p.1010-1017] studied the effect of F.proliferatum against Plasmopara viticola. According to the results of the experiment, the process of sporulation in grape leaves was stopped by 97%.

Materials and Methods. In April 2021, we decided to study the growth dynamics of the Fus.proliferatum fungus isolated from the Rizamat ota and Husaini varieties by the “Alijon Kuvonchbek Bogi” farm on various nutrient media. We chose Chapeka Dox, Saburo, Mendels and KGA as culture media. F.proliferatum was sown on selected nutrient media and placed in a Memmert IPP 500 thermostat at 30ºC.The diameter of the colony formed on the nutrient media of the fungus was measured from 3 to 10 days.

Results. The fungus grown on different nutrient media gave different morphological and physiological results. Table 1 shows the growth dynamics. We know that the composition of the nutrient medium affects not only the physiological state of microorganisms, but also their morphological appearance. In the studied Mendels  nutrient medium, the fungus formed a reddish-white colony, unlike in other mediums (Figure 1).

Table 1.

Growth dynamics of Fusarium proliferatum in different nutrient media

 Potato Dextrose Agar, mm.

Sabouraud Agar, mm.

Mendels, mm

Chapeka Dox, mm






Potato Dextrose


Sabouraud Agar

Chapeka Dox

Figure 4. Colony formation of different sizes by Fusarium proliferatum in different nutrient media


Conclusion.  According to the results, on the 8th day, F.proliferatum formed the largest colonies on nutrient media in Chapeka Dox (92 mm) and Potato Dextrose Agar (91 mm). Next was Mendels (69mm), the smallest diameter Sabouraud Agar (60mm) found in culture medium. In fact, growth was normal on all 4 media. However, Chapeka Dox and KGA proved to be the optimal medium for Fusarium proliferatum. For further research, it is planned to conduct experiments on the basis of the Chapeka Dox nutrient medium to determine the effectiveness of biopreparations against the phytopathogenic fungus Fusarium.



  1. Al Mahmooli I. H., Balushi F. Al, Doyle O., Al Sadi A. M., and Deadman M. L.. First Report of Gladiolus Corm Rot Caused by Fusarium proliferatum in Oman //  Plant Disease -2013.Vol.97, №2. Р.284
  2. Bo Xia, Dongwei  Zhang, Yuanhua Wu, Jianzhong  Hu, Yue  Liang, Jianyang  Hu, Yan Feng Han, and Yue Liang. First Report of Sea buckthorn Stem Wilt Caused by Fusarium proliferatum in Liaoning, China // Plant Disease -2021. Vol.106  №5. P.1528
  3. Cotten T. K. and Munkvold G. P.. Survival of Fusarium moniliforme, F. proliferatum, and F. subglutinans in Maize Stalk Residue. 1998. Phytopathology. Vol.88, №6. Р.550.
  4. Falk, S.P., R.C., Gadoury, D.M., Seem, R.C., and Sztejnberg. A. Fusarium proliferatum as a biocontrol agent against grape downy mildew // Phytopathology  - 1996. Vol.86. P.1010-1017
  5. Letizia Mondani, Giorgio Chiusa, and Paola Battilani. Fungi Associated with Garlic During the Cropping Season, with Focus on Fusarium proliferatum and F.oxysporum // Plant Health Progress -2021. Vol22. №101. Р.37-46  
  6. Lori G., Wolcan S., and Mónaco C. Fusarium moniliforme and F. proliferatum Isolated from Crown and Root Rot of Asparagus and Their Association with Asparagus Decline in Argentina // Plant Disease. -1998. Vol.82, №12. Р.1405
  7. Lin Li, Mingmin Guan, Han Liu, Tianhui Zhu, Shuying Li, Shan Han, Tiantian Lin, Tianmin Qiao, Yinggao Liu, Chunlin Yang, and Shujiang Li. Fusarium proliferatum Associated with Basal Rot Disease of Bambusa pervariabilis × Dendroca lamopsis grandis in China // Plant Disease -2022.11 Feb DOI: 10.1094/PDIS-11-21-2587-PDN
  8. Maria Crespo, Daniel P. Lawrence, Mohamed T. Nouri, David A. Doll, and Florent P. Trouillas. Characterization of Fusarium and Neocosmospora Species Associated With Crown Rot and Stem Canker of Pistachio Rootstocks in California // Plant Disease -2019. Vol.103, Р.1931-1939
  9. Merlington A., Hanson L. E., Bayma R., Hildebrandt K., Steere L., and Kirk W.W., First Report of Fusarium proliferatum Causing Dry Rot in Michigan Commercial Potato (Solanum tuberosum) Production // Plant Disease -2014. Vol.98, №6. Р.843
  10. Namsi A., Rabaaoui A., Masiello M., Moretti A., Othmani A., Gargouri S., Gdoura R., and Werbrouck S. P. O. First Report of Leaf Wilt Caused by Fusarium proliferatum and F. brachygibbosum on Date Palm (Phoenix dactylifera) in Tunisia // Plant Disease -2021.Vol.105. №4. Р.1217
  11. Otilia Ricardo de Farias, José Manoel Ferreira de Lima Cruz, Josiene Silva Veloso, Ingrid Gomes Duarte, Paulo Roberto Ramos Barbosa, Maria do Rosário Fernandes Félix , Carla Marisa Reis Varanda, Patrick Materatski, Monica Danielly de Mello Oliveira, and Luciana  Cordeiro do Nascimento. Occurrence of Fusarium proliferatum causing vascular wilt on cowpea (Vigna unguiculata L. Walp) in Brazil // Plant Disease -2022. Posted online on 28 Feb  DOI: 10.1094/PDIS-01-22-0212-PDN
  12. Olga K. Anisimova, Timofey M. Seredin, Olga A. Danilova, and Mikhail A. Filyushin. First Report of Fusarium proliferatum Causing Garlic Clove Rot in Russian Federation // Plant Disease -2021. Vol.105, №1026.  DOI: 10.1094/PDIS-12-20-2743-PDN
  13.  Prabhukarthikeyan S. R., Keerthana U., Nagendran K., Manoj K. Yadav, Parameswaran C., Panneerselvam P., and Rath P. C.. First Report of Fusarium proliferatum Causing Sheath Rot Disease of Rice in Eastern India // Plant Disease - 2021. Vol.105, №3. Р.704
  14. Petra Mikušová, Antónia Šrobárová, Michael Sulyok, Antonello Santini.  Fusarium fungi and associated metabolites presence on grapes from Slovakia // Mycotoxin Res. -2013. May; Vol 29(2) P.97-102.
  15. Quesada-Ocampo L. M., Butler S., Withers S., and Ivors K. First Report of Fusarium Rot of Garlic Bulbs Caused by Fusarium proliferatum in North Carolina // Plant Disease -2014. Vol.98, №709. P.1009
  16. Robert H., Proctor Anne E. Desjardins,  Antonio Moretti. Biological and Chemical Complexity of Fusarium proliferatum // The Role of Plant Pathology in Food Safety and Food Security -2009. pp 97-111
  17. Ravi N. Sankar and Gundala Prasad Babu. First Report of Fusarium proliferatum Causing Rot of Garlic Bulbs (Allium sativum) in India // Plant Disease   -2012. Vol.96, №211
  18.  Reyes Gaige A.,  Todd T., and Stack J. P. Interspecific Competition for Colonization of Maize Plants Between Fusarium proliferatum and Fusarium verticillioides // Plant Disease -2020. Vol.104, №8. Р. 2102-2110
  19. Salvalaggio A. E. and A. del C. Ridao. First Report of Fusarium proliferatum Causing Rot on Garlic and Onion in Argentina // Plant Disease -2013. Vol.97, №408. p556
  20. Salman Ghuffar, Gulshan Irshad, Fengyan Zhai, Asif Aziz. First Report of Fusarium proliferatum Causing Fruit Rot of Grapes (Vitis vinifera) in Pakistan // International Journal of Phytopathology -2018. Vol 7(2) P.85-88.
  21. Scruggs A. C. and Quesada-Ocampo L. M. Etiology and Epidemiological Conditions Promoting Fusarium Root Rot in Sweetpotato.2016. Phytopathology. 2016. Vol.106, №8. Р.909
  22. Stuart P. Falk, Roger C. Pearson, David M Gadoury, Robert C Seem. Fusarium proliferatum as a Biocontrol Agent Against Grape Downy Mildew // Phytopathology -1996. Vol. 86(10). P.1010-1017.
  23. Shlomo Bakshi, Abraham Sztejnberg, and Oded Yarden. Isolation and Characterization of a Cold-Tolerant Strain of Fusarium proliferatum, a Biocontrol Agent of Grape Downy Mildew // Phytopathology -2001. 17 July. Vol. 91, №11. P.1062-1068
  24. Sumyya Waliullah, Greg E. Fonsah, Jason Brock, Yonggang Li, and Emran Ali. First Report of Crown Rot of Banana Caused by Fusarium proliferatum in Georgia, USA // Plant Disease  -2021. Vol.106. №5. Р.1526
  25. Wanyi Jiang, Wenbo Han, Ruiting Wang, Yonggang Li, Guanghui Hu, Jianfei Yang, Dan Jiang, Wenhao Han, Mingquan Wang, and Guoliang Li. Development of an Inoculation Technique for Rapidly Evaluating Maize Inbred Lines for Resistance to Stalk Rot caused by Fusarium spp. in the Field // Plant disease  - 2021. Vol. 105: P.2306-2313
  26. Waskiewicz A., Golinski P., Karolewski Z., Irzykowska L., Bocianowski J., Kostecki M.& Weber Z. Formation of fumonisins and other secondary metabolites by Fusarium oxysporum and F. proliferatum: a comparative study // Food Additives & Contaminants -2010.  Part A, Vol.27 5, P.608-615
  27. Yan Ni Liu, F. R. Mao,W. D. Yang,Q. Y. Han, J. L. Liu,W. Geng,Xueguo Wang, and Jianfeng Wang. First report of Fusarium proliferatum causing Root and Bulb Rot on tiller onion (Allium cepa L. var. Agrogatum Don) in China // Plant Disease. - 2022. Accepted for publication Posted online on 12 Mart. DOI: 10.1094/PDIS-01-22-0154-PDN
  28. Ziye Wang, Yue Liu, Aihua Yan, and Zhigang Wang.The first report of Juglansregia leaf spot cause by Fusarium proliferatum in China // Plant Disease -2022. Published Online:24 Jan.
  29. Zuzana Mašková, Dana Tančinová, Ľubomír Rybárik, Soňa Felšöciová. Colonization of grape berries by the genus fusarium and toxigenity of the most common representatives // Journal of Microbiology, Biotechnology and Food Science -2014. Vol.3 (1). P.256-258
  30. Савчук Н.В.Фузариозное усыхание генеративных органов винограда и меры борьбы с ним. дис. ... канд. сель.хоз. наук. — М., 2021. — С.160
Информация об авторах

Doctoral student, Department of Biotechnology, Tashkent Institute of Chemical Technology, Republic of Uzbekistan, Tashkent

докторант, кафедра Биотехнология, Ташкентский химико-технологический институт, Республика Узбекистан, Ташкент

Doctor of biological Sciences, professor, Department of Biotechnology, Tashkent Institute of Chemical Technology, Republic of Uzbekistan, Tashkent

д-р биол. наук, проф., кафедра Биотехнология, Ташкентский химико-технологический институт, Республика Узбекистан, Ташкент

Assistant teacher, Department of Microbiology and Biotechnology, Karshi State University, Republic of Uzbekistan, Kashkadarya

ассистент преподаватель, Кафедра Микробиология и Биотехнология, Каршинский государственный университет, Республика Узбекистан, Кашкадаря

Журнал зарегистрирован Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор), регистрационный номер ЭЛ №ФС77-55878 от 17.06.2013
Учредитель журнала - ООО «МЦНО»
Главный редактор - Ларионов Максим Викторович.