докторант кафедры «Неорганическая химия» Национального университета Узбекистана им. М.Улугбека, Республика Узбекистан, г. Ташкент
СИНТЕЗ И СТРОЕНИЕ СМЕШАННОЛИГАНДНЫХ КОМПЛЕКСОВ La(III), Се(III) С 2-АМИНО-1-МЕТИЛБЕНЗИМИДАЗОЛОМ И ДИИЗОПРОПИЛДИТИОФОСФАТОМ
АННОТАЦИЯ
Впервые разработаны условия синтеза смешаннолигандных комплексных соединений La(III) и Ce(III), содержащих 2-амино-1-метилбензимидазол (МАВ) и диизопропилдитиофосфорную кислоту (iso-Pr2PS2-). Полученные комплексные соединения исследованы методами элементного, рентгенофазового, дифференциально-термического анализа, ИК-спектроскопии. По данным ИК-спектроскопии полученных комплексов установлена, что молекулы iso-Pr2PS2- и NO3- взаимодействуют с ионами La3+ и Ce3+ бидентатно-циклически, а с двумя молекулами МАВ монодентатно, образуя при этом искаженную додекаэдрическую координацию. Согласно результатам термического анализа, температуры начала образования летучих продуктов комплексов металлов располагаются в пределах 165-200 °С. Все кривые имеют аналогичный характер: комплексы не содержат воду и выделение продуктов разложения каждого соединения происходит в сравнительно узком температурном интервале.
ABSTRACT
The conditions for the synthesis of mixed-ligand La(III) and Ce(III) complex compounds containing 2-amino-1-methylbenzimidazole (MAB) and diisopropyldithiophosphoric acid (iso-Pr2PS2-) have been developed for the first time. The resulting complex compounds were studied by elemental, X-ray phase, differential thermal analysis, and IR spectroscopy. According to the IR_spectroscopy of the obtained complexes, it was established that the iso-Pr2PS2-and NO3- molecules interact with La3+ and Ce3+ ions bidentate-cyclically, and monodentately with two MAB molecules, thus forming a distorted dodecahedral coordination. According to the results of thermal analysis, the initial temperatures of the formation of volatile products of metal complexes are in the range of 165-200 °C. All curves have a similar character: the complexes do not contain water and the release of decomposition products of each compound occurs in a relatively narrow temperature range.
Ключевые слова: синтез, cмешаннолигандный комплекс, редкоземельные элементы, лиганд, комплексное соединение, 2-аминобензимидазол, ИК-спектроскопия, элементный анализ, термогравиметрический анализ.
Keywords: synthesis, mixed ligand complex, rare earth elements, ligand, complex compound, 2-aminobenzimidazole, IR spectroscopy, elemental analysis, thermogravimetric analysis
Введение
Сегодняшнее развитие координационной химии характеризуется усиленным использованием комплексных соединений металлов с полидентатными полифункциональными органическими соединениями для разделения, концентрирования и количественного определения различных элементов. Успешное решение химических задач возможно при достаточно полной информации об оптимальных условиях образования комплексов. Как для качественного, так и количественного определения элементов групп лантаноидов в различных объектах в настоящее время широко используются их комплексные соединения с органическими реагентами [1-3]. В координационной химии лантаноидов интенсивно развивается направление, связанное с синтезом и исследованием биологических свойств комплексов [4–7]. Этот интерес вызван перспективами использования комплексов лантаноидов для создания биоактивных устройств и лекарств. Использование внутримолекулярного переноса энергии в комплексных соединениях позволило разработать ряд чувствительных методов определения индивидуальных редкоземельных элементов [1, 8-9]. Комплексообразование редкоземельных элементов с бензимидазолами и их производными внедрено в практику аналитического определения ионов металла [10-12]. Так, производные бензимидазол и его соединения используются как лиганды для координации неодима(III), гольмия (III), селена(III) лантана(III) и самария(III).
По принципу Пирсона ионы лантанидов относятся к “жестким” кислотам. Соответственно, известные комплексы лантанидов, обычно содержат лиганды – “жесткие” основания, имеющие донорные атомы N и O. Несомненный интерес вызывает возможность получения комплексов лантаноидов с серосодержащими лигандами – “мягкими” основаниями [13]. Так, получены гетероциклические разнолигандные соединения лантанидов, содержащие монодентатные лиганды, координированные через атом S [14]. К числу серосодержащих лигандов, перспективных для синтеза комплексов лантанидов, следует отнести органические анионы, имеющие группы PS-. При получении люминесцирующих соединений более перспективны разнолигандные комплексы, имеющие в своем составе наряду с серосодержащими лигандами азотистые гетероциклы. Так, ранее получены разнолигандные соединения Nd(Phen)(изо-Bu2PS2)2(NO3), Nd(Phen)(изоBu2PS2)3 [15], Eu(L)(изо_Bu2PS2)2(NO3) [16] и Sm(L)(изо_Bu2PS2)3 (L = Phen, 2,2'_Bipy) [17, 18].
Целью данной работы является изучение комплексообразования диизопропилдитиофосфат калия (i-Pr2PS2)2К и 2-амино-1-метил-1H-бензимидазола (МАВ) с нитратами лантана(III) и церия(III).
Объекты и методы исследования
Для получения комплексов использовали соли La(NO3)3⋅5H2O и Се(NO3)3⋅6H2O квалификации “ч”, диизопропилдитиофосфат калий ((iso-Pr2PS2)2К), а также 2-амино-1-метил-1H-бензимидазол (МАВ) марки «х.ч.». В качестве растворителей использовали изопропиловый спирт, этанол “ос.ч.” .
Комплексные соединения были синтезированы по следующей реакции в эквимолярных пропорциях (рис. 1):
Рисунок 1. Схема синтеза комплексных соединений
Синтез (нитрато)бис(диизопропилдитиофосфато)(2-амино-1-метил-1H-бензимидазол) лантана(III) Ln(MAB)2(iso-Pr2PS2)2(NO3) (I)
К раствору 0,104 г (0,25 ммоль) La(NO3)3⋅5H2O в 5 мл iso-PrOH при перемешивании прибавляли по каплям раствор 0,26 г (1 ммоль) iso-Pr2PS2 в 10 мл iso-PrOH. Образовавшийся осадок КNO3 отфильтровывали на бумажном фильтре и к фильтрату добавляли раствор 0,147 г (1 ммоль) MAB в iso-PrOH. Смесь перемешивали 20 мин. Выпавший осадок на следующий день отфильтровывали с отсасыванием, промывали iso-PrOH и высушивали на воздухе. Образовались бесцветные пластинчатые кристаллы. Выход 84%
Синтез (нитрато)бис(диизопропилдитиофосфато)(2-амино-1-метил-1H-бензимидазол) церия(III) Се(MAB)2(iso-Pr2PS2)2(NO3) (II)
К раствору 0.109 г (0,25 ммоля) Се(NO3)3⋅6H2O в 5 мл iso-PrOH при перемешивании прибавляли раствор 0,26 г (1 ммоля) iso-Pr2PS2 в 10 мл iso-PrOH. Образовавшийся осадок КNO3 отфильтровывали на бумажном фильтре. Затем к фильтрату по каплям при перемешивании прибавляли 0,147 г (1 ммоля) MAВ в 5 мл iso-PrOH. По мере протекания реакции изменялся цвет осадка. Полученную суспензию оставили на сутки. Затем осадок отфильтровали с использованием фильтра Шотта и высушили на воздухе. Образовались желто-зеленые игольчатые кристаллы. Выход 89%
Синтезированные комплексные соединения хорошо растворяются в полярных растворителях, в этаноле мало растворяется и не растворяются в воде.
Для установления индивидуальности синтезированных комплексных соединений снимались дифрактограммы с использованием дифрактометра LabX XRD-6100 (Shimadzu, Япония) с CuKα-излучением. Элементы углерод и кислород в комплексных соединениях определяли с помощью анализатора углерода Analytik Jena TOC Oxygen Analyzer Check Mate. Анализ на С, Н, S, N произведен на элементном анализаторе Thermo Scientific Flash Smart (США). Для изучения способа координации металла с органическими лигандами регистрировали ИК-спектры поглощения на ИК-Фурье спектрометре «IRTracer-100» (SHIMADZU CORP., Япония, 2017) в комплекте с приставкой нарушенного полного внутреннего отражения (НПВО) MIRacle-10 c призмой diamond/ZnSe (спектральный диапазон по шкале волновых чисел - 4000÷400 см-1; разрешение - 4 см-1, чувствительность соотношение сигнал/шум - 60,000:1; скорость сканирования - 20 спектров в секунду). Термические анализы выполнены на термодинамическом оборудовании Netzsch Simporary Analyzer STA 409 PG (Германия). Все измерения проводились со скоростью 50 мл /мин в атмосфере инертного азота. Температурный диапазон анализа 20-1000 °С, нагрев производился со скоростью 5 К/мин. Количество пробы в одной мерке 6-10 мг. При этом масса образца, масса разложения комплексов и термическая стабильность изменяются с повышением температуры. Микроструктуру исследовали с помощью электронно-зондового микроанализа (Jeol JSM-IT200LA).
Результаты и обсуждение
Строение синтезированных комплексных соединений изучено методами элементного, рентгенофазового, термического анализа, ИК-спектроскопии.
Анализ рентгенограмм синтезированных комплексов показывает, что они не содержат примесей исходных продуктов. Сравнение рентгенограмм комплексов лантаноидов с соответствующими лигандами позволяет сделать вывод, что они отличаются друг от друга как межплоскостными расстояниями, так и интенсивностью; поэтому соединения имеют индивидуальную кристаллическую решетку (рис. 2).
а)б)
Рисунок 2. Рентгенограмма комплексного соединения: а) [Lа(MAB)2(iso-Pr2PS2)2(NO3)]; б) [Се(MAB)2(iso-Pr2PS2)2(NO3)]
Элементный состав синтезированных комплексов также анализировали методом SEM-EDX. Микроструктура и EDX-таблица полученного комплекса представлены на рис. 3.
Инфракрасная спектроскопия является очень важным методом определения способа координации лигандов с ионами металлов. ИК-спектры комплексных соединений лантаноидов со смешанными лигандами сравнивали со спектрами FTIR первичных лигандов (MAB и iso-Pr2PS2) (рис. 4).
Element |
Line |
Mass% |
Atom% |
C |
K |
27.70±0.05 |
38.09±0.07 |
N |
K |
14.14±0.10 |
16.68±0.12 |
O |
K |
41.44±0.14 |
42.78±0.14 |
Na |
K |
0.19±0.02 |
0.14±0.01 |
Al |
K |
0.24±0.01 |
0.15±0.01 |
K |
K |
0.74±0.01 |
0.31±0.01 |
La |
L |
15.55±0.09 |
1.85±0.01 |
Total |
|
100.00 |
100.00 |
Рисунок 3. Микроструктура и результаты элементного анализа комплекса [Lа(MAB)2(iso-Pr2PS2)2(NO3)]
Инфракрасные спектры лиганда MAB имеют полосы при 3450-3330 см-1 и приблизительно 1650 см-1, отнесенные к ν(NH2) и δ(NH2) бензимидазольного кольца соответственно [19]. Появление полосы около 1550 см-1 может быть отнесено к колебаниям ν(C=N) [19]. Замещенная фенильная группа демонстрирует кольцевые колебания при 1485-1454 см-1 и 740-725 см-1. Асимметричное валентное колебание связи C-N наблюдается в ИК спектре при 1042 см-1. Полосы, наблюдаемые между 1144 и 1280 см-1 относятся к деформационным колебаниям группы (С-С-Н). Кроме того, симметричное и асимметричное валентное поглощение C=C проявляется при 1370 см-1. Средняя полоса, наблюдаемая при 1470 см-1 в ИК-спектре, относится к колебаниям Н-N.
ИК-спектры лиганда iso-Pr2PS2 и его комплексных соединений представлены в работах [20-22]. В ИК спектре iso-Pr2PS2 имеются характерные валентные колебания групп ν(Р=S) и ν(Р-S-) при 684-640 см-1 и 590-500 см-1, соответственно. При переходе от лигандов к разнолигандным комплексам наблюдается низкочастотный сдвиг полос nP=S и nP-S-, доказывающий образование ковалентной связи металл-сера.
а)
б)
Рисунок 4. ИК-спектры комплекса: а) [Lа(MAB)2(iso-Pr2PS2)2(NO3)]; б) [Се(MAB)2(iso-Pr2PS2)2(NO3)]
В разнолигандных комплексных соединениях [Lа(MAB)2(iso-Pr2PS2)2(NO3)] и [Се(MAB)2(iso-Pr2PS2)2(NO3)] почти все указанные выше частоты колебаний сохранились, однако частично сместились и изменили интенсивность и форму. Основное изменение произошло в группе ν(С=N) в гетероцикле, сдвинувшейся до 25–30 см-1. Следует отметить, что наличие интенсивных колебательных линий в области 1650-1550 см-1 комплексных соединений может относиться и к валентным колебаниям группы С=N в гетероцикле МАВ. В процессе комплексообразования характерные частоты nР=S и nР-S- сместились в область более низких частот на 25-45 см-1, что свидетельствует об образовании комплекса между металлом и лигандом iso-Pr2PS2.
В ИК-спектре комплекса [Lа(MAB)2(iso-Pr2PS2)2(NO3)] имеются полосы при 665 и 590 см–1, характерные для валентных колебаний группы PSS−, и новые полосы при 1279 см–1, которые следует отнести к расщепленной полосе ν3 бидентатно координированной NO3‑ ‑ группы [23]. Наличие аналогичных полос в спектре комплекса [Се(MAB)2(iso-Pr2PS2)2(NO3)] подтверждает бидентатно циклическую координацию лигандов изо-Pr2PS2 и NO3- в этих соединениях.
На основание полученных данных можно сделать вывод, что молекулы iso-Pr2PS2 и NO3- взаимодействуют с ионами La3+ и Ce3+ бидентатно-циклически, а с двумя молекулами МАВ монодентатно, образуя при этом искаженную додекаэдрическую координацию.
Для определения термической стабильности и состава полученных комплексных соединений проведен дифференциально-термический анализ (рис. 5, табл. 1-2).
Анализ кривой динамического термогравиметрического анализа (ДТГА) комплекса [Lа(MAB)2(iso-Pr2PS2)2(NO3)] показывает, что кривая ДТГА имеет место в основном в 2-х диапазонах интенсивных температур разложения. Температура начала разложения комплексного соединения составляет 164,40 0C. Диапазон разложения 1 соответствует температуре 119-356 0С, а диапазон разложения 2 соответствует температуре 366-911 0С. Анализ показывает, что во втором интервале разложения происходит более интенсивный процесс разложения. Потеря массы в этом диапазоне составляет 41,65%. В результате дериватографических исследований основная потеря массы происходит в диапазоне 154-745 oC, при этом теряется 91,24% основной массы.
а)
б)
Рисунок 5. Дериватограмма: а) [Lа(MAB)2(iso-Pr2PS2)2(NO3)]; б) [Се(MAB)2(iso-Pr2PS2)2(NO3)]
Таблица 1.
Анализ результатов кривых ДТГА и ДСК комплекса [Lа(MAB)2(iso-Pr2PS2)2(NO3)]
№ |
Температура,оС |
Потерянная масса, % |
Скорость разложения вещества, мг / мин |
Количество потребляемой энергии (µV*s/mg)) |
1 |
50 |
1,564 |
0,137 |
1,45 |
2 |
100 |
7,251 |
0,465 |
2,88 |
3 |
200 |
54,51 |
0,453 |
2,01 |
4 |
300 |
76,34 |
0,087 |
3,02 |
5 |
400 |
32,22 |
0,147 |
1,02 |
6 |
500 |
54,54 |
0,455 |
2,03 |
7 |
600 |
69,18 |
2,499 |
1,59 |
8 |
700 |
78,41 |
2,125 |
1,69 |
9 |
800 |
83,01 |
1,265 |
1,89 |
10 |
900 |
87,51 |
2,698 |
3,02 |
11 |
1000 |
91,24 |
1,235 |
2,05 |
Дериватограмма комплекса [Се(MAB)2(iso-Pr2PS2)2(NO3)] состоит из 3 кривых. Анализ кривой динамического термогравиметрического анализа показывает, что кривая ДТГА в основном приходится на 2 интервала температур интенсивного разложения.
Таблица 2.
Анализ результатов кривых ДТГА и ДСК комплекса [Се(MAB)2(iso-Pr2PS2)2(NO3)]
№ |
Температура, оС |
Потерянная масса, % |
Скорость разложения вещества, мг / мин |
Количество потребляемой энергии (µV*s/mg)) |
1 |
50 |
0,925 |
0,137 |
1,45 |
2 |
100 |
2,985 |
0,465 |
2,88 |
3 |
200 |
28,25 |
0,453 |
2,01 |
4 |
300 |
37,35 |
0,087 |
3,02 |
5 |
400 |
45,85 |
0,147 |
1,02 |
6 |
500 |
59,49 |
0,455 |
2,03 |
7 |
600 |
64,15 |
2,499 |
1,59 |
8 |
700 |
78,01 |
2,125 |
1,69 |
9 |
800 |
87,02 |
1,265 |
1,89 |
10 |
900 |
88,58 |
2,698 |
3,02 |
11 |
1000 |
90,41 |
1,235 |
2,05 |
Температура начала разложения комплекса происходит при 164 0С. Интервал разложения 1 соответствует температуре 164-307 0С, а интервал разложения 2 соответствует температуре 425-940 0С. Анализы показывают, что более интенсивный процесс разложения происходит в первом интервале разложения. В этом интервале происходит 56,3% разложения комплексного соединения. Подробный анализ кривой динамического термогравиметрического анализа и кривой ДСК приведен в табл.2. В результате дериватографических исследований видно, что уменьшение основной массы происходит в интервале 150-930 оС, в котором теряется 90,2% основной массы.
Таким образом, дериватографическое исследование комплексов показывает, что термическое разложение комплексов является сложным многостадийным процессом, и оно происходит ступенчато с образованием промежуточных продуктов. Все кривые имеют аналогичный характер: комплексы не содержат воду и выделение продуктов разложения каждого соединения происходит в сравнительно узком температурном интервале. Остаток от разложения комплексов представляет собой оксид соответствующего металла.
Выводы
На основание физико-химических исследований синтезированных комплексных соединений установлена, что молекулы iso-Pr2PS2 и NO3- взаимодействуют с ионами La3+ и Ce3+ бидентатно-циклически, а с двумя молекулами МАВ монодентатно, образуя при этом искаженную додекаэдрическую координацию. Рентгенофазовый анализ лигандов, исходных солей металлов, а также синтезированных координационных соединений показал различие дифрактограмм, что указывает на индивидуальность полученных соединений. Методом дифференциального термического анализа установлено термическое поведение синтезированных координационных соединений и идентифицированы продукты термолиза.
Список литературы:
- Закирова Н. Р., Меметов Д. Р., Сарнит Е. А., Баевский М.Ю Синтез, строение и свойства координационных соединений лантана (III) и неодима (III) с производными 2-(1H-бензимидазол-1-ил) ацетогидразида //Ученые записки Крымского федерального университета имени ВИ Вернадского. Биология. Химия. – 2015. – Т. 1. – №. 3 (67). – С. 114-124.
- Wickleder M. S. Inorganic lanthanide compounds with complex anions //Chemical reviews. – 2002. – Т. 102. – №. 6. – С. 2011-2088.
- Belousov Y.A., Drozdov A A., Taydakov I.V., Marchetti F., Pettinari R., Pettinari C. Lanthanide azolecarboxylate compounds: Structure, luminescent properties and applications //Coordination Chemistry Reviews. – 2021. – Т. 445. – С. 214084.
- Cotton S. Lanthanide and actinide chemistry. – John Wiley & Sons, 2013.
- Jastrząb R., Nowak M., Skrobańska M., Tolińska A., Zabiszak M., Gabryel M., Kaczmarek M. T. DNA as a target for lanthanide (III) complexes influence //Coordination Chemistry Reviews. – 2019. – Т. 382. – С. 145-159.
- Жердева В. В., Савицкий А. П. Применение лантанидного индуктивно‑резонансного переноса энергии при изучении биологических процессов in vitro и in vivo //Успехи биологической химии. – 2012. – Т. 52. – С. 315-362.
- Tăbăcaru A., Dediu A.V.B., Dinică R.M., Cârâc G., Basliu V., Campello M.P.C., Marques F. Biological properties of a new mixed lanthanide (III) complex incorporating a dypiridinium ylide //Inorganica Chimica Acta. – 2020. – Т. 506. – С. 119517.
- Chen Y., Qiu J., Chen Z., Zhao Y., Li B., Zeng C. New luminescent lanthanide complexes and Tb, Eu co-doped complex as a wide temperature self-calibrating thermometer //Dyes and Pigments. – 2021. – Т. 194. – С. 109671.
- Магомадова М. А. Синтез и люминесцентные свойства комплексных соединений европия (III), гадолиния (III) и тербия (III) с алкилоксибензойными кислотами и формирование пленок на их основе: дис. …канд.хим.наук. -Грозный, 2018.
- Olea-Román D., Solano-Peralta A., Pistolis G., Petrou A.L., Kaloudi-Chantzea A., Esturau-Escofet, N., Castillo-Blum S.E. Lanthanide coordination compounds with benzimidazole-based ligands. luminescence and EPR //Journal of Molecular Structure. – 2018. – V. 1163. – P. 252-261.
- Boukhemis O., Bendjeddou L., Platas-Iglesias C., Esteban-Gómez D., Carcelli M., Merazig H. Hydrothermal synthesis of six new lanthanides coordination polymers based on 1-H-benzimidazole-5-carboxylic acid: Structure, Hirshfeld analysis, thermal and spectroscopic properties //Inorganica Chimica Acta. – 2020. – Т. 510. – Р. 119740.
- Cruz-Navarro A., Hernández-Romero D., Flores-Parra A., Rivera J.M., Castillo-Blum S.E., Colorado-Peralta R. Structural diversity and luminescent properties of coordination complexes obtained from trivalent lanthanide ions with the ligands: tris ((1H-benzo [d] imidazol-2-yl) methyl) amine and 2, 6-bis (1H-benzo [d] imidazol-2-yl) pyridine// Coordination Chemistry Reviews. -2021. -V.427. -P.213587
- Брылева Ю.А., Кокина Т.Е., Глинская Л.А., Усков Е.М., Рахманова М.И., Алексеев А.В., Ларионов С.В. Синтез, строение и фотолюминесценция разнолигандных комплексов Ln(L)(изо-Bu2PS2)2(NO3) (Ln = Sm, Tb, Dy; L = Phen, 2,2'-Bipy// Координационная химия. -2012. -Т.38. -№ 11. -C 755–764.
- Katkova M. A., Borisov A V., Fukin G.K., Baranov E.V., Averyushkin A.S., Vitukhnovsky A G., Bochkarev M.N. Synthesis and luminescent properties of lanthanide homoleptic mercaptothi (ox) azolate complexes: Molecular structure of Ln (mbt) 3 (Ln= Eu, Er) //Inorganica chimica acta. – 2006. – V. 359. – N. 13. – P. 4289-4296.
- Ларионов С.В., Варанд В.Л., Клевцова Р.Ф. и др. Синтез разнолигандного комплекса Nd(Phen){(i-C4H9)2PS2)}2(N03), кристаллическая структура [Nd(Phen){(i-C4H9)2PS2)] и люминесцентные свойства этих соединений// Коорд. химия. -2008. -Т. 34. -№ 12. -С. 944-950.
- Варанд В.Л, Усков Е.М., Корольков И.В., Ларионов С.В. Синтез и люминесцентные свойства комплексов EuL(i-Bu2PS2)2(N03) (L = Phen, 2,2'-Bipy, 4,4'-Bipy)// Журн. общ. химии. -2009. -Т. 79. -№ 2. -С. 240.
- Варанд В.Л., Клевцова Р.Ф., Глинская Л.А., Ларионов С.В. Получение разнолигандных соединений LnL{(i-C4H9)2PS2)}3 (Ln = Pr, Nd, Sm, Eu; L = 1,10-фенантролин, 2,2'-бипиридил Кристаллические и молекулярные структуры соединений [Eu(Phen){(i-C4H9)2PS2)}3] и [Eu(2,2'-Bipy){(i-C4H9)2PS2)}3]// Коорд. химия. -2000. -Т. 26. -№ 11. -С. 869-877.
- Кокина Т.Е., Клевцова Р.Ф., Усков Е.М. и др. Кристаллическая структура соединения Sm(Phen)(i-Bu2PS2)3-MeCN и фотолюминесцентные свойства Sm(L)(i-Bu2PS2)3 (L = Phen, 2,2'-Bipy) //Журн. структур. химии. -2010. -Т. 51. -№ 5. -С. 976-981.
- Nakamoto, K.: Infrared and Raman Spectra of Inorganic and Cordination Compounds, Wiley, New York, pp324, 1986
- Даминова Ш.Ш. Закономерности сорбции цветных и благородных металлов с P, S, О, N-содержащими твердыми экстрагентами и их структурная особенность / Диссертация на соискание ученой степени доктора химических наук (DSc). -2019. -С. 340
- Даминова Ш.Ш., Кадирова З.Ч., Пардаев О.Т., Шарипов Х.Т. Синтез и ИК-спектроскопическое исследование разнолигандных комплексов ди-алкилдитиофосфатов платины (II) // Пятая Республиканская конференция по аналитической химии с международным участием «Аналитика РБ-2017» Сборник тезисов докладов, Минск, 19—20 мая 2017 г. -C. 111.
- Даминова Ш.Ш., Кадирова З.Ч., Шарипов Х.Т. ИК-спектроскопическое исследование благородных металлов с импрегнированными сорбентами на основе стирол-дивинилбензола // Узб химич журнал. -2018. -№2. –С.3-11
- Ruzieva B.Y., Tojiboeva I.M., Daminova Sh.Sh., Kadirova Z.Ch., Sharipov Kh.T. Synthesis and research of mixed ligand complex compounds of rare earth elements on the basis 2-amino-1-methylbenzymidazole and n-hydroxybenzamide// Узбекский химический журнал. -2021. №4. -С. 3-12