ИЗУЧЕНИЕ СИНТЕЗА 1,2,3-ТРИАЗОЛОВ НА ОСНОВЕ О-ПРОПАРГИЛОКСИБЕНЗАЛЬДЕГИДА

STUDY OF THE SYNTHESIS OF 1,2,3-TRIAZOLES BASED ONO-PROPARHYLOXYBENZALDEHYDE
Усманова С.Г.
Цитировать:
Усманова С.Г. ИЗУЧЕНИЕ СИНТЕЗА 1,2,3-ТРИАЗОЛОВ НА ОСНОВЕ О-ПРОПАРГИЛОКСИБЕНЗАЛЬДЕГИДА // Universum: химия и биология : электрон. научн. журн. 2022. 2(92). URL: https://7universum.com/ru/nature/archive/item/13001 (дата обращения: 11.01.2026).
Прочитать статью:

 

АННОТАЦИЯ

В работе приведены результаты исследований реакций получения 1,2,3-триазолов на основе о-пропаргилоксибензальдегида. Разработана доступная методика синтеза 1,2,3-триазолов на основе о-пропаргилоксибензальдегида.

ABSTRACT

The paper presents the results of studies of the reactions of obtaining 1,2,3-triazoles on the basis of o-propargyloxybenzaldehyde. An accessible method for the synthesis of 1,2,3-triazoles based on o-propargyloxybenzaldehydehas been developed.

 

Ключевые слова: бромпропаргил, фенилазид, 1,2,3-триазол, 1,3-диполярное циклоприсоединение.

Keywords: bromopropargyl, phenylazide, 1,2,3-triazole, 1,3-dipolar cycloaddition.

 

Одной из основных задач синтетической органической химии является поиск простых и эффективных методов синтеза новых биологически активных соединений, которые обеспечат потребность в них сельского хозяйства, медицины и многих других отраслей народного хозяйства.

Азотсодержащие соединения обладают высокой реакционной способностью. Они являются прекрасными алкилирующими агентами, применяются для получения циклических соединений при синтезе разнообразных гетероциклических соединений [1].

На основе ацетилена и его производных с помощью разнообразных реакций синтезируются разные химические продукты, широко используемые в различных отраслях народного хозяйства.

Производство ацетилена в промышленном масштабе в Узбекистане и возможность получения соединений на его основе повышает теоретическую и практическую значимость научно-исследовательских работ, проводимых в данном направлении. При циклоприсоединении азидов к алкинам образуются гетереоциклические  соединения, содержащие 3 атома азота в своем составе –триазолы проявляют многосторонную реакционную способность, и множество химических и  фармакологических свойств. Например, среди них имеются вещества, которые являются важными препаратами, обладающими гербицидной, фунгицидной, инсектицидной активностью, что важно  для агропромышлености; найдены среди них вещества с противо-воспалительными [2,3], антимикробными [4], противодиабетическими [5] свойствами. Синтез соединений с тройной связью и органических азидов, также проведение реакций циклического соединения между азид-алкинами, поиск среди них биологически активных веществ имеет важное значение [6].

Триазолы представляют собой наиболее интересным классом органических соединений в отношении их химических свойств и практического применения. Благодаря реакционной способности и физиологической активности  они стали предметом широких исследований. Кроме классических методов  синтеза триазоловособое значение приобрели методы, в основе которых лежит реакция Хьюсгена.[7]      

Циклоприсоединение Хьюсгена - это реакция диполярофила с 1,3-диполярным соединением, которая приводит к 5-членным (гетеро) циклам. Примерами диполярофилов являются алкены, алкины и молекулы, которые имеют родственные гетероатомные функциональные группы (такие как карбонилы и нитрилы). 1,3-Диполярные соединения содержат один или несколько гетероатомов[8].

Азид-алкиновое циклоприсоединение - реакция между азидами и алкинами с образованием 1,2,3-триазолов. Некаталитический вариант реакции был исследован Хьюсгеномв в начале 1960-х в рамках изучения реакций 1,3-диполярного присоединения. В литературе он получил название «Реакция Хьюсгена».

В 2001 году Шарплесс предложил термин «Click Chemistry», набор высоконадежных, практичных и селективных реакций для быстрого синтеза ценных новых соединений и должна быть с высоким выходом, широкой по объему, генерировать только безвредные побочные продукты (которые могут быть удалены без хроматографии), стереоспецифичными, простыми для проведения и требующими безвредного растворителя [9].

Шарплесс и Мелдал [10], независимо друг от друга, выявили катализируемый соединениями, содержащими медь вариант азид-алкинового циклоприсоединения (ААС) Хьюсгена (реакция CuAAC), который в литературе считается одним из ярких примеров клик-химии. Уникальными преимуществами реакции CuAAC являются превосходный объем субстрата, хорошая региоселективность (только 1,4-изомер), высокий выход продуктов и мягкие условия проведения реакции.

В классическом варианте реакция идет по механизму 1,3-диполярного присоединенияи приводит к образованию смеси изомерных 1,4-и 1,5-дизамещенных 1,2,3-триазолов:

О каталитических свойствах солей Cu(I) было  впервые сообщено в независимых публикациях Мортена Мельдаля и Барри Шарплесса. [11]

Каталитический вариант реакции не протекает синхронно, а имеет постадийный механизм, поэтому не может называться реакцией Хьюсгена, хотя в литературе иногда встречается такое название. Благодаря введению катализатора реакция получила несколько преимуществ, позволивших применить её в различных биотехнологических приложениях, и стала известна под аббревиатурой CuAAC (Cu-катализируемое азид-алкиновое циклоприсоединение)[12].

Интенсивно развивающаяся в настоящее время химия ацетиленовых соединений привлекает внимание многих исследователей, что связано с теми богатыми возможностями разнообразных химических превращений, которые представляют ацетиленовые группировки, обладающие большой реакционной способностью. Наличие тройной углерод-углеродной связи и подвижного атома водорода способствует реакциям 1,3-диполярного цикло присоединения бензальдегида с фенилазидом [13].

Целью исследования является синтез новых 1,2,3-триазолов на основе

о-пропаргилоксибензальдегида, установление их структуры, и изучение биологической активности для применения в фармакологии и иных отраслях.

В настоящей работе проведен синтез 1,2,3-триазола, по реакции 1,3-диполярного циклоприсоединения,между пропаргилового эфира орто-оксибензальдегида сфенилазидом. В качестве катализатора применен иодидмеди (I). Схема реакции:

 

 

Методика синтеза

 2-((1-фенил-1Н-1,2,3-триазол- 4-ил) метокси) бензалдегида.

В круглодонную колбу  объемом 100 мл поместили 0,96 г (6,0 ммоль)

о-пропаргилоксибензальдегида, 0,71 мл (0,65 ммол, 0,77 г, ρ=1,086 г/мл) фенилазида, 0,10 г иодида меди (I) и 40,0 мл толуола. Колбу установили в масляную баню, оснастили обратным холодильником, реакционную смесь кипятили при температуре кипячения толуола (110,6ºС) в течение 4-6 часов. Ход реакции контролировали методом тонкослойной хроматографии. По истечении установленного времени реакцию остановили и содержимое в колбе оставляли на сутки при комнатной температуре. Выпавший осадок отфильтровывали, высушивали и перекристаллизовывали в этанол.

Получен продукт с массой 1,32 г, выход 79%, т.пл.=140ºС, Rf=0,75(бензол:метанол– 5:1).

Таким образом, осуществлен синтез пропаргилового эфира орто-оксибензальдегида с фенилазидом.

На основе полученных эфира и азида изучено влияние температуры, природы растворителя и катализатора на протекание реакции. Структура синтезированных 1,2,3-триазола определены элементным анализом.

ИК-спектр полученых веществ сняты на КBr таблетках на  спектрометре ИК-Фурье Система 2000 фирмы Перкин-Элмер, 1Н ЯМР- и13С ЯМР-спектры получены на установке JNM-ECZ600R (Jeol-Япония, внутренний стандарт ГМДС, d-шкала) в растворителях дейтерированного  трихлорметана (CDCl3) в ДМСО-d6 (Cambridge Isotope Labs, CIL). Тонкослойная хроматография (ТСХ) проведена на пластинках «Whatman® UV-254» (Германия). В качестве элюента использована система растворителей бензол: метанол в соотношении 5:1. Температуры плавления синтезированных веществ определены с помощью прибора «Boetius» (Германия).

 

Список литературы:

  1. Martin Breugst and Hans-Ulrich Reissig. The Huisgen Reaction: Milestones of the 1,3-Dipolar Cycloaddition. // Angew. Chem. Int. Ed.2020, 59, 12293 – 12307.
  2. Livi O., Biagi G., Ferreti M., Lucacchini A., Baili P.L. Synthesis and in vitro antro anti-inflammatory activity of 4-phenyl-1,2,3-triazole derivatives // Europ. J. Med.chem.-1983.-V.18, N.5.-P.471-475.
  3. Livi O., Ferrarini P. L., Tonetti., Smaldone F., Zefola G. Syntesiedosame farmacologica di deerivati 1,2,3-triazolici dellanaftalina, Chinoline e piridina // Farmaco Ed.Se.-1979.-V, 34, №3.- Р. 217-228.
  4. Golovanov A.A., Odin I.S., Bekin V.V., Vologzhanina A.V., Bushmazinov I.S., Zlotski S.S., Gerasimov Yu., Purygin P.P. Azolyl-substituted 1,2,3-triazoles // Russian Journal of Organic Chemisty.-2016.-52(3)-P.414-420.
  5. Abdel Wahab B.F., Abdel-Latif E., Mohamed H.A., Awad E.A. Design and synthesis of new 4-pyrazolin-3-yl-1,2,3-triazoles and 1,2,3-triazol-4-yl-purazolin-1-ylthazoles as potential antimicrobial //European Journal of medicinal chemistry.-52,-Pp 263-268.
  6. Lauria A., Delisi R., Mingoia F., Terenzi A., Martorana A., Barone G., Almerico A.M. 1,2,3-Triazole in Heterocyclic Compounds, Endowed with Biological Activity, through 1,3-Dipolar Cycloadditions // European Journal of Organic Chemistry. 2014. – V16. – Pp. 3289–3306.
  7. Dommerholt J.,  Schmidt S., Temming R., Hendriks L.J.A., Rutjes F.P.J.T., van Hest J.C.M., Lefeber D.J., Friedl P., van Delft F.L. Readily Accessible Bicyclononynes for Bioorthogonal Labeling and Three-Dimensional Imaging of Living Cells (англ.) // Angew. Chem. Int. Ed. 2010. - Vol. 49.Pp. 9422–9425.
  8. Zhang L., Chen X., Xue P., Sun H.H.Y., Williams I. D., Sharpless K.B., Fokin V.V., Jia G.Ruthenium-Catalyzed Cycloaddition of Alkynes and Organic Azides (англ.) // J.Am.Chem. Soc.- 2005.- Vol. 127, no. 46. Pp. 15998–15999. 
  9. Bernardin, A.; A. Cazet; L. Guyon; P. Delannoy; F. Vinet; D. Bonnaffe and I. Texier.High Density Orthogonal Surface Immobilization via Photoactivated Copper-Free Click Chemistry //Bioconjugate Chemistry, Vol.21, №.4, 2010, Рp. 583-588,
  10. For recent reviews, see: (a) Kolb H.C.; Sharpless K.B. Cu-Catalyzed Azide-аlkyne Cycloaddition // Chem. Int. Ed.2001, Р.40.
  11. Baskin J. M.; J. A. Prescher S. T. Laughlin; N. J. Agard; P. V. Chang; I. A. Miller; A. Lo; J. A.Codelli and C. R. Bertozzi. Copper-free click chemistry for dynamic in vivo imaging //Proceedings of the National Academy of Sciences of the United States of America, Vol.104, No.43, 2007, pp. 16793-16797
  12. Maya Shankar Singh, Sushobhan Chowdhury, Suvajit Koley // Advances of azide-alkyne cycloaddition-click chemistry over the recent decade: Tetrahedron 72 2016, 5257-5283
  13. Johan R. Johansson, Tamas Beke-Somfai, Anna Said Stalsmeden, and Nina Kann Chem. Ruthenium-catalyzed azide alkynecycloaddition reaction: Scope, mechanism, and applications. Rev. 2016, 116, 14726−14768.
Информация об авторах

д-р филос. хим. наук (PhD), доц. кафедры общей химии Андижанского филиала Кокандского университета, Узбекистан, г. Андижан

Doctor of Philosophy of Chemical Sciences (PhD), Associate Professor, Department of General Chemistry of Kokand University Andijan Branch, Uzbekistan, Andijan

Журнал зарегистрирован Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор), регистрационный номер ЭЛ №ФС77-55878 от 17.06.2013
Учредитель журнала - ООО «МЦНО»
Главный редактор - Ларионов Максим Викторович.
Top