ст. преп., Андижанский институт сельского хозяйства и агротехнологий, кафедра “Физики и химии”, Узбекистан, г. Андижан
ИЗУЧЕНИЕ СИНТЕЗА 1,2,3-ТРИАЗОЛОВ НА ОСНОВЕ О-ПРОПАРГИЛОКСИБЕНЗАЛЬДЕГИДА
АННОТАЦИЯ
В работе приведены результаты исследований реакций получения 1,2,3-триазолов на основе о-пропаргилоксибензальдегида. Разработана доступная методика синтеза 1,2,3-триазолов на основе о-пропаргилоксибензальдегида.
ABSTRACT
The paper presents the results of studies of the reactions of obtaining 1,2,3-triazoles on the basis of o-propargyloxybenzaldehyde. An accessible method for the synthesis of 1,2,3-triazoles based on o-propargyloxybenzaldehydehas been developed.
Ключевые слова: бромпропаргил, фенилазид, 1,2,3-триазол, 1,3-диполярное циклоприсоединение.
Keywords: bromopropargyl, phenylazide, 1,2,3-triazole, 1,3-dipolar cycloaddition.
Одной из основных задач синтетической органической химии является поиск простых и эффективных методов синтеза новых биологически активных соединений, которые обеспечат потребность в них сельского хозяйства, медицины и многих других отраслей народного хозяйства.
Азотсодержащие соединения обладают высокой реакционной способностью. Они являются прекрасными алкилирующими агентами, применяются для получения циклических соединений при синтезе разнообразных гетероциклических соединений [1].
На основе ацетилена и его производных с помощью разнообразных реакций синтезируются разные химические продукты, широко используемые в различных отраслях народного хозяйства.
Производство ацетилена в промышленном масштабе в Узбекистане и возможность получения соединений на его основе повышает теоретическую и практическую значимость научно-исследовательских работ, проводимых в данном направлении. При циклоприсоединении азидов к алкинам образуются гетереоциклические соединения, содержащие 3 атома азота в своем составе –триазолы проявляют многосторонную реакционную способность, и множество химических и фармакологических свойств. Например, среди них имеются вещества, которые являются важными препаратами, обладающими гербицидной, фунгицидной, инсектицидной активностью, что важно для агропромышлености; найдены среди них вещества с противо-воспалительными [2,3], антимикробными [4], противодиабетическими [5] свойствами. Синтез соединений с тройной связью и органических азидов, также проведение реакций циклического соединения между азид-алкинами, поиск среди них биологически активных веществ имеет важное значение [6].
Триазолы представляют собой наиболее интересным классом органических соединений в отношении их химических свойств и практического применения. Благодаря реакционной способности и физиологической активности они стали предметом широких исследований. Кроме классических методов синтеза триазоловособое значение приобрели методы, в основе которых лежит реакция Хьюсгена.[7]
Циклоприсоединение Хьюсгена - это реакция диполярофила с 1,3-диполярным соединением, которая приводит к 5-членным (гетеро) циклам. Примерами диполярофилов являются алкены, алкины и молекулы, которые имеют родственные гетероатомные функциональные группы (такие как карбонилы и нитрилы). 1,3-Диполярные соединения содержат один или несколько гетероатомов[8].
Азид-алкиновое циклоприсоединение - реакция между азидами и алкинами с образованием 1,2,3-триазолов. Некаталитический вариант реакции был исследован Хьюсгеномв в начале 1960-х в рамках изучения реакций 1,3-диполярного присоединения. В литературе он получил название «Реакция Хьюсгена».
В 2001 году Шарплесс предложил термин «Click Chemistry», набор высоконадежных, практичных и селективных реакций для быстрого синтеза ценных новых соединений и должна быть с высоким выходом, широкой по объему, генерировать только безвредные побочные продукты (которые могут быть удалены без хроматографии), стереоспецифичными, простыми для проведения и требующими безвредного растворителя [9].
Шарплесс и Мелдал [10], независимо друг от друга, выявили катализируемый соединениями, содержащими медь вариант азид-алкинового циклоприсоединения (ААС) Хьюсгена (реакция CuAAC), который в литературе считается одним из ярких примеров клик-химии. Уникальными преимуществами реакции CuAAC являются превосходный объем субстрата, хорошая региоселективность (только 1,4-изомер), высокий выход продуктов и мягкие условия проведения реакции.
В классическом варианте реакция идет по механизму 1,3-диполярного присоединенияи приводит к образованию смеси изомерных 1,4-и 1,5-дизамещенных 1,2,3-триазолов:
О каталитических свойствах солей Cu(I) было впервые сообщено в независимых публикациях Мортена Мельдаля и Барри Шарплесса. [11]
Каталитический вариант реакции не протекает синхронно, а имеет постадийный механизм, поэтому не может называться реакцией Хьюсгена, хотя в литературе иногда встречается такое название. Благодаря введению катализатора реакция получила несколько преимуществ, позволивших применить её в различных биотехнологических приложениях, и стала известна под аббревиатурой CuAAC (Cu-катализируемое азид-алкиновое циклоприсоединение)[12].
Интенсивно развивающаяся в настоящее время химия ацетиленовых соединений привлекает внимание многих исследователей, что связано с теми богатыми возможностями разнообразных химических превращений, которые представляют ацетиленовые группировки, обладающие большой реакционной способностью. Наличие тройной углерод-углеродной связи и подвижного атома водорода способствует реакциям 1,3-диполярного цикло присоединения бензальдегида с фенилазидом [13].
Целью исследования является синтез новых 1,2,3-триазолов на основе
о-пропаргилоксибензальдегида, установление их структуры, и изучение биологической активности для применения в фармакологии и иных отраслях.
В настоящей работе проведен синтез 1,2,3-триазола, по реакции 1,3-диполярного циклоприсоединения,между пропаргилового эфира орто-оксибензальдегида сфенилазидом. В качестве катализатора применен иодидмеди (I). Схема реакции:
Методика синтеза
2-((1-фенил-1Н-1,2,3-триазол- 4-ил) метокси) бензалдегида.
В круглодонную колбу объемом 100 мл поместили 0,96 г (6,0 ммоль)
о-пропаргилоксибензальдегида, 0,71 мл (0,65 ммол, 0,77 г, ρ=1,086 г/мл) фенилазида, 0,10 г иодида меди (I) и 40,0 мл толуола. Колбу установили в масляную баню, оснастили обратным холодильником, реакционную смесь кипятили при температуре кипячения толуола (110,6ºС) в течение 4-6 часов. Ход реакции контролировали методом тонкослойной хроматографии. По истечении установленного времени реакцию остановили и содержимое в колбе оставляли на сутки при комнатной температуре. Выпавший осадок отфильтровывали, высушивали и перекристаллизовывали в этанол.
Получен продукт с массой 1,32 г, выход 79%, т.пл.=140ºС, Rf=0,75(бензол:метанол– 5:1).
Таким образом, осуществлен синтез пропаргилового эфира орто-оксибензальдегида с фенилазидом.
На основе полученных эфира и азида изучено влияние температуры, природы растворителя и катализатора на протекание реакции. Структура синтезированных 1,2,3-триазола определены элементным анализом.
ИК-спектр полученых веществ сняты на КBr таблетках на спектрометре ИК-Фурье Система 2000 фирмы Перкин-Элмер, 1Н ЯМР- и13С ЯМР-спектры получены на установке JNM-ECZ600R (Jeol-Япония, внутренний стандарт ГМДС, d-шкала) в растворителях дейтерированного трихлорметана (CDCl3) в ДМСО-d6 (Cambridge Isotope Labs, CIL). Тонкослойная хроматография (ТСХ) проведена на пластинках «Whatman® UV-254» (Германия). В качестве элюента использована система растворителей бензол: метанол в соотношении 5:1. Температуры плавления синтезированных веществ определены с помощью прибора «Boetius» (Германия).
Список литературы:
- Martin Breugst and Hans-Ulrich Reissig. The Huisgen Reaction: Milestones of the 1,3-Dipolar Cycloaddition. // Angew. Chem. Int. Ed.2020, 59, 12293 – 12307.
- Livi O., Biagi G., Ferreti M., Lucacchini A., Baili P.L. Synthesis and in vitro antro anti-inflammatory activity of 4-phenyl-1,2,3-triazole derivatives // Europ. J. Med.chem.-1983.-V.18, N.5.-P.471-475.
- Livi O., Ferrarini P. L., Tonetti., Smaldone F., Zefola G. Syntesiedosame farmacologica di deerivati 1,2,3-triazolici dellanaftalina, Chinoline e piridina // Farmaco Ed.Se.-1979.-V, 34, №3.- Р. 217-228.
- Golovanov A.A., Odin I.S., Bekin V.V., Vologzhanina A.V., Bushmazinov I.S., Zlotski S.S., Gerasimov Yu., Purygin P.P. Azolyl-substituted 1,2,3-triazoles // Russian Journal of Organic Chemisty.-2016.-52(3)-P.414-420.
- Abdel Wahab B.F., Abdel-Latif E., Mohamed H.A., Awad E.A. Design and synthesis of new 4-pyrazolin-3-yl-1,2,3-triazoles and 1,2,3-triazol-4-yl-purazolin-1-ylthazoles as potential antimicrobial //European Journal of medicinal chemistry.-52,-Pp 263-268.
- Lauria A., Delisi R., Mingoia F., Terenzi A., Martorana A., Barone G., Almerico A.M. 1,2,3-Triazole in Heterocyclic Compounds, Endowed with Biological Activity, through 1,3-Dipolar Cycloadditions // European Journal of Organic Chemistry. 2014. – V16. – Pp. 3289–3306.
- Dommerholt J., Schmidt S., Temming R., Hendriks L.J.A., Rutjes F.P.J.T., van Hest J.C.M., Lefeber D.J., Friedl P., van Delft F.L. Readily Accessible Bicyclononynes for Bioorthogonal Labeling and Three-Dimensional Imaging of Living Cells (англ.) // Angew. Chem. Int. Ed. 2010. - Vol. 49.Pp. 9422–9425.
- Zhang L., Chen X., Xue P., Sun H.H.Y., Williams I. D., Sharpless K.B., Fokin V.V., Jia G.Ruthenium-Catalyzed Cycloaddition of Alkynes and Organic Azides (англ.) // J.Am.Chem. Soc.- 2005.- Vol. 127, no. 46. Pp. 15998–15999.
- Bernardin, A.; A. Cazet; L. Guyon; P. Delannoy; F. Vinet; D. Bonnaffe and I. Texier.High Density Orthogonal Surface Immobilization via Photoactivated Copper-Free Click Chemistry //Bioconjugate Chemistry, Vol.21, №.4, 2010, Рp. 583-588,
- For recent reviews, see: (a) Kolb H.C.; Sharpless K.B. Cu-Catalyzed Azide-аlkyne Cycloaddition // Chem. Int. Ed.2001, Р.40.
- Baskin J. M.; J. A. Prescher S. T. Laughlin; N. J. Agard; P. V. Chang; I. A. Miller; A. Lo; J. A.Codelli and C. R. Bertozzi. Copper-free click chemistry for dynamic in vivo imaging //Proceedings of the National Academy of Sciences of the United States of America, Vol.104, No.43, 2007, pp. 16793-16797
- Maya Shankar Singh, Sushobhan Chowdhury, Suvajit Koley // Advances of azide-alkyne cycloaddition-click chemistry over the recent decade: Tetrahedron 72 2016, 5257-5283
- Johan R. Johansson, Tamas Beke-Somfai, Anna Said Stalsmeden, and Nina Kann Chem. Ruthenium-catalyzed azide alkynecycloaddition reaction: Scope, mechanism, and applications. Rev. 2016, 116, 14726−14768.