PhD по химических наук, старший преподаватель кафедрой Химии, Наманганский инженерно-технологический институт, Республика Узбекистан, город Наманган
Синтез 5-гидрокси-5-метилгекс-3-иновой кислоты
АННОТАЦИЯ
В статье описан синтез 5-гидрокси-5-метилгекс-3-иновой кислоты на основе монохлоруксусной кислоты с ацетиленовым спиртом и описаны квантово-химические свойства полученного вещества. Была продемонстрирована роль триэтиламина в этом процессе.
ABSTRACT
The article describes the synthesis of 5-hydroxy-5-methylhex-3-yne based on monochloroacetic acid with acetylene alcohol and describes the quantum-chemical properties of the resulting substance. The role of triethylamine in this process has been demonstrated.
Ключевые слова: ацетиленовый спирт, монохлоруксусная кислота, триэтиламин, хлорид меди (I), квантово-химические расчеты, электронная плотность.
Keywords: acetylene alcohol, monochloroacetic acid, triethylamine, copper I-chloride, quantum-chemical calculation, electron density.
Введение. В связи с особенностями строения полифункциональных соединений ацетилена и их широким спектром биологического действия, существует интерес к исследованиям, направленных на создание лекарственных (в виде универсальных блок-синтонов) и сельскохозяйственных препаратов с помощью тонкого органического синтеза. Интерес к таким соединениям обусловлен тем, что сильный акцептор электронов рядом с тройной связью резко увеличивает его электрофильность, позволяя реакциям нуклеофильного связывания, характерным для ацетиленов, протекать с высокой эффективностью и стереоселективностью в очень мягких условиях, даже без использования катализаторов и реагентов с высоким содержанием оснований. В результате сложные полициклические структуры могут быть получены в режиме одного реактора. Это, в свою очередь, требует теоретических исследований для поиска новых биологически активных веществ на основе этого типа соединений ацетилена.
Исходя из вышесказанного, целесообразно провести исследования по синтезу гидроксикислот ацетилена и их производных.
Методика исследования. Для синтеза использовали реагенты квалификации «х.ч.»: 2-метилбут-3-ин-2-ол, монохлоруксусную кислоту, триэтиламин, хлорид меди (I), а также растворители диоксан и хлороформ.
В трёхгорлую колбу объёма 250 мл, снабженную мешалкой, обратным холодильником и термометром, помещали 8,4 г (0,1 моль) монохлоруксусной кислоты, 100 мл диоксана, 10 мл (0,1 моль) ацетиленового спирта – 3-метилбутин-1-ол-3, 17 мл (0,1 моль) триэтиламина и 0,02 г соли хлорида меди (I). Реакционную смесь нагревали при 95-98 0С в течение 4-5 часов при перемешивании. Затем процесс останавливали и готовый продукт оставляли на 1 сутки.
Затем реакционную смесь переносили в делительную воронку на 1000 мл. Остаток в реакционной колбе промывали 10-15 мл дистиллированной воды. Вливали 100 мл хлороформа в реакционную смесь в воронке, экстрагировали и отделяли органическую часть. Этот процесс повторяли не менее 3 раз.
Органические продукты, выделенные из реакционной смеси, состоят из гидроксикислот ацетилена и растворителей. Хлороформ в этой смеси отгоняли на водяной бане при температуре 60-80 °С. Затем отгоняли диоксан при 98-110 °С.
Обсуждения результатов. В данном исследовании гидроксикислота ацетилена была синтезирована на основе ацетиленового спирта – 2-метилбут-3-ин-2-ола и монохлоруксусной кислоты. Процесс происходит согласно схеме 1 ниже
Схема 1
При взаимодействии ацетиленового спирта и монохлоруксусной кислоты в среде инертного растворителя и в присутствии катализатора на основе триэтиламина и хлорида меди (I) происходят следующие процессы:
1) Ацетиленовый спирт образует p-комплекс с катализатором хлорида меди (I) (Схема 2), уменьшая плотность электронных облаков в тройной связи.
Схема 2
В результате атом водорода, связанный с углеродом, имеющего тройную связь, активируется и его положительный заряд увеличивается.
2) Активные центры монохлоруксусной кислоты в нейтральной среде следующие: молекула имеет дипольный момент 4,96 Дебая, эта поляризация происходит, в основном, в карбоксильной группе молекулы (рис.1).
Рис.1. Строение молекулы монохлоруксусной кислоты
В этом случае заряд углерода карбоксильной группы составляет +0,588 эВ. Заряды кислорода 3 и 4 составляют -0,162 и -0,649 эВ, соответственно. Заряд атома углерода в метиленовой группе (-CH2-) составляет -0,013 эВ. В среде неполярного растворителя активные центры монохлоруксусной кислоты расположены на атомах углерода и кислорода (Cd+= Od-) в ее карбонильной группе. Связывание молекулы с ацетиленовым спиртом через углерод -CºC-H в этом случае считается невозможным.
3) Необходимо изменить активные центры монохлоруксусной кислоты, чтобы обеспечить обмен водорода, присоединенного к углероду, который имеет тройную связь в ацетиленовом спирте. Для этого в реакционную среду добавляют триэтиламин. Молекула триэтиламина имеет структуру, богатую нуклеофильными центрами.
Эти нуклеофильные часты электростатически взаимодействуют с электрофильным атомом углерода (C (2)) монохлоруксусной кислоты, но связанный с углеродом атом кислорода встречает пространственный барьер из соседних атомов углерода (1) и хлора (5), и не может образовывать с ним прямую связь (см. рис.1). В результате нуклеофильная часть молекулы смещается к 1-углеродному атому (C (1)). Этот атом углерода (C (1)) взаимодействует с атомом углерода метильной группы в молекуле триэтиламина. В результате этого взаимодействия связь между атомом углерода C (1) и атомом хлора (Cl (5)) ослабляется. Здесь следует отметить, что особая структура триэтиламина играет важную роль в возникновении следующей стадии механизма реакции. Нераспределенные электронные пары атома азота в этой молекуле образуют донорно-акцепторную связь с водородом при ºC-H, который активируется катализатором на основе хлорида меди (I). Это, в свою очередь, обеспечивает преобразование относительно освобожденного атома хлора в монохлоруксусной кислоте в атом водорода. В этом случае ацетиленовый спирт образует большое промежуточное соединение, состоящее из меди (I) - хлорида, триэтиламина, монохлоруксусной кислоты (схема 3).
Схема 3.
Это промежуточное соединение имеет очень небольшую стабильность из-за наличия многих невалентных взаимодействий и его большого размера и массы.
Таким образом, промежуточное соединение распадается на отдельные молекулы, которые являются энергетически приемлемыми и стабильными. Прежде всего, высвобождается гидрохлорид триэтиламина и ацетильная группа связывается с тройной связью в ацетиленовом спирте. Поскольку σ-связь, образованная этим соединением, является прочной, активирующий тройную связь хлорид меди (I) высвобождается из образовавшегося нового соединения.
Наконец, образуется продукт реакции ацетиленового спирта и монохлоруксусной кислоты – гидроксикислота ацетилена (схема 4).
Схема 4.
Выводы
Проведенные исследования и квантово-химические расчеты позволяют сделать следующие выводы: в процессе синтеза гидроксикислоты ацетилена 5-гидрокси-5-метилгекс-3-иновая кислота на основе ацетиленового спирта и монохлоруксусной кислоты первоначально образует p-комплекс катализатора хлорида меди (I) с ацетиленовым спиртом (Схема 2).
Полученный комплекс реагирует с монохлоруксусной кислотой с помощью триэтиламина с образованием нестабильного промежуточного соединения (схема 3). Затем разложение промежуточного соединения приводит к образованию 5-гидрокси-5-метилгекс-3-ин кислоты (схема 4).
Список литературы:
- Frisch M.J., Trucks G.W., Schlegel H. B., et. al. (2007) // Gaussian 03 (Revision E0.1), Gaussian Inc., Pittsburgh PA.
- Чуев Г.Н. Молекулярные модели сольватации в полярных жидкостях. // Успехи химии. – 2003. – Т. 72, № 9. – С. 827–851.
- Tomasi J. Quantum Mechanical Continuum Solvation Models. // Chem. Rev. – 2005. – V. 105, No. 8.– P. 2999–3094
- Солиев М.И. и др. Расчет электронных строении молекулы некоторых веществ с основе компьютерных программ // Журнал «Новые информационные технологии в науке». ООО «АЭТЕРНА» 2015. №2, Т-2. С.12-14.
- Солиев М.И. Расчет реакционной способности молекулы полуэмпириче-ским методом с использованием информационных технологий // Современные научные исследования и инновации. 2015. – № 4. Ч. 1 [Электронный ресурс]. URL: http://web.snauka.ru/issues/2015/04/51392. Дата обращения: 14.09.2020.
- Темкин О.Н. Химия ацетилена // Соросовский образовательный журнал. – 1998. -№12. -С.52-58.
- Степанов Н.Ф. Квантовая механика и квантовая химия. –М:.-2001. –С. 128-139
- Солиев М.И., Охундадаев А.К. Теоретическое расчёты электронных строении молекулы ментола и тимола // Журнал «Вопросы науки и образования».-2018.-№8(20).Россия. /https://scientificpublication.ru. Дата обращения: 14.09.2020.