канд. биол. наук, доцент кафедры медицинской биологии, Львовский национальный медицинский университет им. Данила Галицкого, Украина, г. Львов
Характеристика популяционного состава лейкоцитов периферической крови крыс при действии катионов свинца
АННОТАЦИЯ
Показано, что катионы свинца проявляют ингибирующее влияние на процесс лимфопоэза у экспериментальных животных. Однако в условиях введения крысам ацетата свинца в дозе 10 мг/кг массы происходит интенсификация процессов, приводящих к поступлению в русло крови незрелых форм нейтрофилов (палочкоядерные нейтрофилы) и других клеток миелоидного ряда. В связи с этим в течение десяти суток после поступления в организм крыс токсиканта возможные изменения общего количества лейкоцитов в крови отравленных ацетатом свинца животных не обнаруживаются.
ABSTRACT
It was revealed that plumbum cations exhibit inhibitory effect on lymphopoiesis process in experimental animals. However, in the conditions of plumbum acetate rats exposure at a dose of 10 mg/kg mass intensification of the processes leading to entry of immature forms of neutrophils (band neutrophils) and other cells of the myeloid series into blood stream occurs. As a result, within ten days after rat toxicant exposure, possible changes in the total number of leukocytes in the blood of poisoned by plumbum acetate animals are not detected.
Список литературы:
1. Boyum A.A. A one-stage procedure for isolation of granulocytes and lymphocytes from human blood // Scand. J. Clin. Lab. Invest. — 1968. — V. 21, Suppl., 97. — P. 51—76.
2. Elsas P.X., Neto H.A., Cheraim A.B. et al. Induction of bone-marrow eosinophilia in mice submitted to surgery is dependent on stress-induced secretion of glucocorticoids // Br. J. Pharmacol. — 2004. — V. 143, № 5. — P. 541—548.
3. Erlemann K.R., Cossette C., Gravel S. et al. Airway epithelial cells synthesize the lipid mediator 5-oxo-ETE in response to oxidative stress // Free Radic. Biol. Med. — 2007. — V. 42, № 5. — P. 654—664.
4. Fernandez-Cabezudo M.J., Ali S.A., Ullah A. et al. Pronounced susceptibility to infection by Salmonella enterica serovar Typhimurium in mice chronically exposed to lead correlates with a shift to Th2-type immune responses // Toxicol. Appl. Pharmacol. — 2007. — V. 218, № 3. — P. 215—226.
5. Gao D., Kasten-Jolly J., Lawrence D.A. The paradoxical effects of lead in interferon-gamma knockout BALB/c mice // Toxicol. Sci. — 2006. — V. 89, № 2. — P. 444—453.
6. Jeong S.W., Lee C.K., Suh C.H. et al. Blood lead concentration and related factors in Korea from the 2008 national survey for environmental pollutants in the human body // Int. J. Hyg. Environ. Health. — 2014. — V. 217, № 8. — P. 871—877.
7. Kang J.K., Sul D., Kang J.K. et al. Effects of lead exposure on the expression of phospholipid hydroperoxidase glutathione peroxidase mRNA in the rat brain // Toxicol. Sci. — 2004. — V. 82, № 1. — P. 228—236.
8. Karmaus W., Brooks K.R., Nebe T. et al. Immune function biomarkers in children exposed to lead and organochlorine compounds: a cross-sectional study // Environ. Health. — 2005. — V. 4, № 1. — P. 5—9.
9. Park D.U., Kim D.S., Yu S.D. et al. Blood levels of cadmium and lead in residents near abandoned metal mine areas in Korea // Environ. Monit. Assess. — 2014. — V. 186, № 8. — Р. 5209—5220.
10. Sivaprasad R., Nagaraj M., Varalakshmi P. Combined efficacies of lipoic acid and 2,3-dimercaptosuccinic acid against lead-induced lipid peroxidation in rat liver // J. Nutr. Biochem. — 2004. — V. 15, № 1. — P. 18—23.
11. Sun L., Hu J., Zhao Z. et al. Influence of exposure to environmental lead on serum immunoglobulin in preschool children // Environ. Res. — 2003. — V. 92. — P. 124—128.
12. Vargas H., Castillo C., Posadas F., Escalante B. Acute lead exposure induces renal haeme oxygenase-1 and decreases urinary Na+ excretion // Hum. Exp. Toxicol. — 2003. — V. 22, № 5. — P. 237—244.
References:
1. Boyum A.A. A one-stage procedure for isolation of granulocytes and lymphocytes from human blood. Scand. J. Clin. Lab. Invest., 1968, vol. 21, suppl. 97, pp. 51—76.
2. Elsas P.X., Neto H.A., Cheraim A.B. Induction of bone-marrow eosinophilia in mice submitted to surgery is dependent on stress-induced secretion of glucocorticoids. Br. J. Pharmacol., 2004, vol. 143, no. 5, pp. 541—548.
3. Erlemann K.R., Cossette C., Gravel S. Airway epithelial cells synthesize the lipid mediator 5-oxo-ETE in response to oxidative stress. Free Radic. Biol. Med., 2007, vol. 42, no. 5, pp. 654—664.
4. Fernandez-Cabezudo M.J., Ali S.A., Ullah A. Pronounced susceptibility to infection by Salmonella enterica serovar Typhimurium in mice chronically exposed to lead correlates with a shift to Th2-type immune responses. Toxicol. Appl. Pharmacol., 2007, vol. 218, no. 3, pp. 215—226.
5. Gao D., Kasten-Jolly J., Lawrence D.A. The paradoxical effects of lead in interferon-gamma knockout BALB/c mice. Toxicol. Sci., 2006, vol. 89, no. 2, pp. 444—453.
6. Jeong S.W., Lee C.K., Suh C.H. Blood lead concentration and related factors in Korea from the 2008 national survey for environmental pollutants in the human body. Int. J. Hyg. Environ. Health, 2014, vol. 217, no. 8, pp. 871—877.
7. Kang J.K., Sul D., Kang J.K. Effects of lead exposure on the expression of phospholipid hydroperoxidase glutathione peroxidase mRNA in the rat brain. Toxicol. Sci., 2004, vol. 82, no. 1, pp. 228—236.
8. Karmaus W., Brooks K.R., Nebe T. Immune function biomarkers in children exposed to lead and organochlorine compounds: a cross-sectional study. Environ. Health, 2005, vol. 4, no. 1, pp. 5—9.
9. Park D.U., Kim D.S., Yu S.D. Blood levels of cadmium and lead in residents near abandoned metal mine areas in Korea. Environ. Monit. Assess, 2014, vol. 186, no. 8, pp. 5209—5220.
10. Sivaprasad R., Nagaraj M., Varalakshmi P. Combined efficacies of lipoic acid and 2,3-dimercaptosuccinic acid against lead-induced lipid peroxidation in rat liver. J. Nutr. Biochem., 2004, vol. 15, no. 1, pp. 18—23.
11. Sun L., Hu J., Zhao Z. Influence of exposure to environmental lead on serum immunoglobulin in preschool children. Environ. Res., 2003, vol. 92, pp. 124—128.
12. Vargas H., Castillo C., Posadas F., Escalante B. Acute lead exposure induces renal haeme oxygenase-1 and decreases urinary Na+ excretion. Hum. Exp. Toxicol., 2003, vol. 22, no. 5, pp. 237—244.