ENHANCING PHONETIC ANALYSES WITH SOFTWARE TOOLS: CURRENT TRENDS AND FUTURE DIRECTIONS

УСОВЕРШЕНСТВОВАНИЕ ФОНЕТИЧЕСКОГО АНАЛИЗА С ПОМОЩЬЮ ПРОГРАММНЫХ ИНСТРУМЕНТОВ: СОВРЕМЕННЫЕ ТЕНДЕНЦИИ И ПЕРСПЕКТИВЫ РАЗВИТИЯ
Khamidova N.
Цитировать:
Khamidova N. ENHANCING PHONETIC ANALYSES WITH SOFTWARE TOOLS: CURRENT TRENDS AND FUTURE DIRECTIONS // Universum: филология и искусствоведение : электрон. научн. журн. 2025. 6(132). URL: https://7universum.com/ru/philology/archive/item/20300 (дата обращения: 20.07.2025).
Прочитать статью:
DOI - 10.32743/UniPhil.2025.132.6.20300

 

ABSTRACT

This paper explores the evolving landscape of computer-assisted phonetic analysis, examining how technological advancements have transformed traditional approaches to phonetic research. By reviewing contemporary software tools and methodologies, this study highlights the significant improvements in accuracy, efficiency, and accessibility that modern computational approaches offer to phoneticians. The integration of artificial intelligence, machine learning, and automated speech recognition systems has expanded the capabilities of phonetic research, enabling more sophisticated analyses of speech data across diverse linguistic contexts. This paper argues that while software tools have revolutionized phonetic analysis, their optimal implementation requires a balanced approach that combines technological innovation with linguistic expertise. Future directions for the field include further development of cross-linguistic analysis capabilities, improved accessibility features, and integration with other language research domains.

АННОТАЦИЯ

В данной статье рассматривается развивающаяся сфера компьютерной фонетической аналитики, а также то, как технологический прогресс трансформировал традиционные подходы к фонетическим исследованиям. Анализируя современные программные средства и методологии, исследование подчеркивает значительные улучшения в точности, эффективности и доступности, которые обеспечивают современные вычислительные методы для фонетистов. Интеграция искусственного интеллекта, машинного обучения и автоматических систем распознавания речи расширила возможности фонетических исследований, позволив проводить более сложные и детализированные анализы речевых данных в различных языковых контекстах. В статье утверждается, что, несмотря на революционные изменения, вызванные программными средствами в фонетическом анализе, их эффективное использование требует сбалансированного подхода, сочетающего технологические инновации с лингвистической компетентностью. Перспективные направления в данной области включают дальнейшее развитие межъязыкового анализа, улучшение функций доступности и интеграцию с другими направлениями лингвистических исследований.

 

Keywords: Phonetic analyses tools, Praat, Wavesurfer, Speech analyzer, ultrasound, electromagnetic articulography, AI systems.

Ключевые слова: инструменты фонетического анализа, Praat, Wavesurfer, Speech Analyzer, ультразвук, электромагнитная артикулятография, системы искусственного интеллекта.

 

Introduction

Phonetic analysis, the systematic study of speech sounds in human language, has undergone significant transformation with the integration of computational tools. As P. Ladefoged noted, “computers have revolutionized the study of acoustic phonetics”[8], shifting the field from primarily auditory impressionistic analyses to precisely quantifiable acoustic measurements. The evolution of these tools has progressively lowered technical barriers while simultaneously expanding analytical capabilities.

The contemporary phonetician’s toolkit includes specialized software for recording, visualizing, measuring, and manipulating speech signals. These applications facilitate analyses that would be practically impossible through manual methods alone. According to Harrington and Cassidy, “the development of computational techniques has been indispensable to the advancement of phonetic science, providing researchers with unprecedented accuracy and efficiency in analyzing the acoustic properties of speech” [5, 4].

This paper examines the current state of phonetic analysis software, evaluates its impact on research methodologies, and explores future directions in this rapidly evolving field. The central argument presented is that while technological tools have significantly enhanced phonetic research capabilities, their optimal implementation requires a thoughtful integration of computational approaches with linguistic expertise.

Main part

Evolution of Phonetic Analysis Tools

The journey from oscillographic tracings to sophisticated digital analysis platforms reflects the technological evolution that has shaped modern phonetics. Early computerized phonetic analysis began with rudimentary spectrographic tools in the 1950s and 1960s, which produced visual representations of speech but required substantial technical expertise and expensive equipment [3].

The accessibility of phonetic analysis tools expanded dramatically with the introduction of personal computers in the 1980s and subsequent software developments. As Styler observes, “the democratization of phonetic analysis software has transformed the field from a specialized domain requiring expensive equipment to one accessible to researchers with standard computing resources” [17].

Current Software Landscape

Contemporary phonetic analysis is dominated by several key software platforms that offer varying capabilities. One of them is Praat which developed by Boersma and Weenink (2021) and it remains one of the most widely used tools for phonetic analysis. Its open-source nature, comprehensive feature set, and scripting capabilities have made it a standard in the field. As Gobl and Ní Chasaide note, “Praat has become the de facto standard for acoustic phonetic analysis due to its versatility and accessibility” [4, 429].

Another tool Elan specializes in the annotation and analysis of audio and video recordings, facilitating multimodal linguistic analysis [20]. Its time-aligned transcription capabilities are particularly valuable for research involving prosodic features and discourse analysis.

Representing the newer generation of automated analysis tools, FAVE combines forced alignment with acoustic measurement to streamline vowel analysis in large datasets [12].

Additionally, Speech Analyzer software was developed by SIL International, this software caters to field linguists working with lesser-documented languages, emphasizing usability and essential analytical functions (SIL International, 2012).

Customizable platform Wavesurfer offers modular functionality for visualization and manipulation of speech signals, providing flexibility for specialized research applications [15].

Methodological Impacts of Software Tools

The integration of computational tools has fundamentally altered research methodologies in phonetics, enabling analyses that were previously unfeasible. Software tools facilitate the processing of vast quantities of speech data, enabling population-level analyses of phonetic variation. As documented by Kendall “computational approaches have enabled researchers to scale up from laboratory studies of limited scope to comprehensive investigations of phonetic patterns across entire speech communities” [7, 55].

Modern software allows precise measurement of acoustic parameters, including formant trajectories, spectral moments, and voice quality indicators. From our point of view digital analysis tools permit measurements at temporal resolutions and frequency precisions that far exceed human perceptual capabilities.

Advanced tools now integrate with articulatory measurement technologies, including ultrasound, electromagnetic articulography, and MRI, providing multimodal insights into speech production [16].

Software tools have contributed significantly to the standardization of phonetic analysis methods, enhancing reproducibility in the field:

Platforms like Praat implement consistent algorithms for extracting acoustic parameters, reducing methodological variation between studies. Lennes argues that “the availability of shared analysis scripts and standardized procedures has significantly improved comparability across phonetic studies” [9, 118].

Modern phonetic research increasingly embraces open science principles, with researchers sharing analysis scripts, data processing workflows, and raw measurements. This transparency, facilitated by computational tools, enhances reproducibility and scientific rigor [11].

Software-based analyses create audit trails that document analytical decisions, parameter settings, and processing steps, improving methodological transparency [6].

Emerging AI Applications

Recent developments in artificial intelligence offer promising new directions for phonetic research. For instance, AI systems trained on diverse language data can identify phonetic patterns across typologically distinct languages, facilitating comparative research [2]. Machine learning models can now detect subtle phonetic differences between regional dialects with high accuracy, supporting sociolinguistic research.

Advanced synthesis models allow phoneticians to create precisely controlled stimuli for perceptual experiments, manipulating specific acoustic parameters while maintaining naturalness [19].

Despite their advantages, current phonetic analysis tools present several challenges like technical limitations. Many analysis algorithms incorporate assumptions that may not hold across all speech contexts or languages.

Despite improvements in user interfaces, effective use of phonetic software still requires specialized knowledge. Wagner et al. note that “the apparent accessibility of these tools can mask the substantial expertise required to configure analysis parameters appropriately and interpret results accurately”. [18]

Different software packages may implement ostensibly similar measurements using different algorithms, potentially leading to inconsistent results across studies using different tools.

In addition, several technological trends are likely to shape the future of phonetic analysis software:

The emergence of web-based tools facilitates collaborative research and sharing of analytical workflows across research teams [13].

Advances in processing power are enabling real-time acoustic analysis with immediate feedback, particularly valuable for clinical applications and language teaching [10].

Future tools will likely better integrate phonetic analysis with other aspects of linguistic research, including syntax, semantics, and pragmatics, supporting more holistic language science.

Conclusion

The evolution of phonetic analysis software has transformed research methodologies, expanded analytical capabilities, and increased accessibility to sophisticated techniques. As this review has demonstrated, computational tools have become indispensable to modern phonetic research, enabling investigations that would otherwise be impractical or impossible.

However, the optimal implementation of these tools requires a balanced approach that combines technological sophistication with linguistic expertise. The future of phonetic analysis likely lies in the thoughtful integration of artificial intelligence and machine learning with human expertise, supported by increasingly collaborative and open research practices.

The continued development of phonetic analysis software promises to further expand research horizons, particularly in cross-linguistic studies, sociophonetic investigations, and clinical applications. By addressing current limitations and embracing methodological innovations, the field is positioned to build upon its substantial progress and further enhance our understanding of human speech production and perception.

 

References:

  1. Boersma, P., & Weenink, D. (2021). Praat: Doing phonetics by computer [Computer program]. Version 6.1.55, retrieved from http://www.praat.org/
  2. Chodroff, E., Golden, A., & Wilson, C. (2016). Covariation of stop voice onset time across languages: Evidence for a universal constraint on phonetic realization. The Journal of the Acoustical Society of America, 139(4), EL116-EL121.
  3. Fant, G. (1960). Acoustic theory of speech production. Mouton & Co.
  4. Gobl, C., & Ní Chasaide, A. (2010). Voice source variation and its acoustic consequences. In W. J. Hardcastle, J. Laver, & F. E. Gibbon (Eds.), The handbook of phonetic sciences (2nd ed., pp. 378-423). Wiley-Blackwell.
  5. Harrington, J., & Cassidy, S. (2012). Techniques in speech acoustics. Springer Science & Business Media.
  6. Jannedy, S., & Weirich, M. (2017). Spectral moments vs discrete cosine transformation coefficients: Evaluation of acoustic measures distinguishing two merging German fricatives. The Journal of the Acoustical Society of America, 142(1), 395-405.
  7. Kendall, T. (2013). Speech rate, pause and sociolinguistic variation: Studies in corpus sociophonetics. Palgrave Macmillan.
  8. Ladefoged, P. (2003). Phonetic data analysis: An introduction to fieldwork and instrumental techniques. Wiley-Blackwell.
  9. Lennes, M. (2017). Managing and analyzing audio recordings and speech corpus data. In A. Suni & M. Vainio (Eds.), The phonetics of Finnish (pp. 110-127). De Gruyter Mouton.
  10. Ouni, S. (2014). Tongue control and its implication in pronunciation training. Computer Assisted Language Learning, 27(5), 439-453.
  11. Roettger, T. B., Winter, B., Kirby, J., Grawunder, S., & Grice, M. (2019). Assessing incomplete neutralization of final devoicing in German. Journal of Phonetics, 76
  12. Rosenfelder, I., Fruehwald, J., Evanini, K., Seyfarth, S., Gorman, K., Prichard, H., & Yuan, J. (2014). FAVE (Forced Alignment and Vowel Extraction) program suite v1.2.2.
  13. Rosenfelder, I., Fruehwald, J., Evanini, K., & Yuan, J. (2021). FAVE-Web: A web interface for automated alignment and extraction. Speech Communication, 127, 43-57.
  14. SIL International. (2012). Speech Analyzer (Version 3.1) [Computer software]. http://www.sil.org/resources/software_fonts/speech-analyzer
  15. Sjölander, K., & Beskow, J. (2000). WaveSurfer—an open source speech tool. In Sixth International Conference on Spoken Language Processing.
  16. Stone, M. (2005). A guide to analysing tongue motion from ultrasound images. Clinical Linguistics & Phonetics, 19(6-7), 455-501.
  17. Styler, W. (2017). On the acoustical features of vowel nasality in English and French. The Journal of the Acoustical Society of America, 142(4), 2469-2482.
  18. Wagner, M., Trouvain, J., & Zimmerer, F. (2015). In defense of methodological pluralism in phonetics and speech science. In Proceedings of the 18th International Congress of Phonetic Sciences.
  19. Watts, O., Wu, Z., & King, S. (2016). Sentence-level control vectors for deep neural network speech synthesis. In Interspeech 2016, 2257-2261.
  20. Wittenburg, P., Brugman, H., Russel, A., Klassmann, A., & Sloetjes, H. (2006). ELAN: A professional framework for multimodality research. In Proceedings of the 5th International Conference on Language Resources and Evaluation (LREC), 1556-1559.
Информация об авторах

2nd-year doctoral student of Uzbek State University of World Languages, Uzbekistan, Tashkent

докторант 2-го года обучения, Узбекский государственный университет мировых языков, Республика Узбекистан, г. Ташкент

Журнал зарегистрирован Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор), регистрационный номер ЭЛ №ФС77-54436 от 17.06.2013
Учредитель журнала - ООО «МЦНО»
Главный редактор - Лебедева Надежда Анатольевна.
Top