Head of the Department of Automation of machine building production, Andijan Machine Building Institute, Uzbekistan, Andijan
DEVELOPMENT OF A WIRELESS WATER QUALITY MONITORING SYSTEM FOR WATER TREATMENT FACILITIES
ABSTRACT
In this article, a system for monitoring water quality parameters based on a network of wireless sensors has been developed to improve the accuracy of measuring water quality in real time. The results show that the required parameters of the measurement accuracy is respectively, the measurement error of temperature, pH and DO, and the Maximum error of the dissolved oxygen value is 1,9%, 2,6% and 3,1%. The whole system works stable and reliable.
АННОТАЦИЯ
В данной статье разработана система мониторинга параметров качества воды на основе сети беспроводных датчиков для повышения точности измерения качества воды в режиме реального времени. Результаты показывают, что требуемыми параметрами точности измерения являются соответственно погрешность измерения температуры, рН и растворенного кислорода, а максимальная погрешность значения растворенного кислорода составляет 1,9%, 2,6% и 3,1%. Вся система работает стабильно и надежно.
Keywords: water quality monitoring, distributed wireless network, digital filtering algorithm, particle optimization algorithm; PID controller.
Ключевые слова: мониторинг качества воды, распределенная беспроводная сеть, алгоритм цифровой фильтрации, алгоритм оптимизации частиц; ПИД-регулятор.
Introduction. Water resources are important and the basis for the development of the national economy and are associated with the security and standard of living of people. With the development of the economy of the Republic of Uzbekistan and the improvement of people's living standards, wastewater discharge is increasing day by day, and the wastewater treatment industry is facing huge challenges. The process of wastewater treatment is that the water after a certain treatment must meet the established regulatory standards and the water after treatment can be used in reservoirs [1-4].
Software Development. Transmission Control Center Base Station Programming The base station of the transmission control center is responsible for sending data from the data collection terminal to the remote monitoring system and adjusting the water temperature, DO and pH according to the instructions sent by the remote monitoring system. After turning on the central base station, each hardware port is initialized, and then the remote monitoring system is connected first [5]. Connection communication between the base station center and the remote monitoring system can only be initiated by the base station of the transmission control center, and its connection process is as follows: the user enters the unique identification code of the base station of the transmission control center into the remote monitoring system, waits for the central base station to send its own unique identification code, and matches them, and the connection is established correctly, otherwise the connection fails; After connecting to the remote monitoring system, the central base station starts transmitting data. In order to ensure the security of the system, the system is monitored [6-8].
Wireless network settings for data transfer. To ensure the efficiency and reliability of data transmission, it is necessary to establish a data transmission and reception network between the data collection terminal and the transmission control center, so that the base station of the transmission control center and the remote monitoring terminal can determine which collection terminal to send data to, and determine the exact search for faulty equipment in maintenance time. In order to achieve this function, by pre-programming the rules for each wireless transceiver module, a tag address is assigned, each time data is transmitted once to the tag address, the base station of the transmission control center and the remote monitoring system through the docking of the received data decoding, sender sensor address can be identified. For this purpose, National Instruments (NI) LabVIEW graphical programming is used. Using a graphical interface, users can query current and historical data through the monitoring system and set target standard water quality parameters.
Figure 1. Block diagram of the base station software of the transmission control center
Figure 2. Block diagram of the base station software of the the block diagram of the communication connection
The remote online monitoring system consists of a human computer interface (UI), a communication module and a database (DB). The function of the user interface is to provide users with a human-computer interface, the communication module is responsible for sending and receiving data, and the database is used to store the collected archive parameters. To save monitoring data for the system, you need to create a database [9-11]. NI provides LabVIEW with specific tools for connecting to a database: connecting to a database; which is implemented with this toolkit; connection between LabVIEW and the database. Install temperature tables, pH tables, and dissolved oxygen tables in the database to store relevant data.
Measurement of water quality parameters. To check the accuracy of measuring the water quality parameters of the designed system, the corresponding parameters of the same water body are measured simultaneously by a standard device and the designed system, and two measurement results are compared. The table of test results shows: actual temperature 23.5°C, measured value 23.8°C; Actual pH 7.2, Measured value 7.2. Measured at 8.3 mg/L actual dissolved oxygen. The maximum measurement errors for temperature, pH, and dissolved oxygen are 2.1%, 1.3%, and 3.6%, respectively.
To test the feasibility of the control method and the control accuracy of the system, 3 tests were carried out for temperature, pH and dissolved oxygen concentration. The test results for adjusting water quality parameters are shown in table 1.
Table 1.
Results
Control Options |
№ |
Measuring parameters before tuning |
Parameters according to the standard |
Actual correction value Standard instrument measurement) / % of adjustment error |
Adjustment time |
|
Temperature, °C |
1. |
24 |
20 |
20,38 |
1,9 |
0,73 |
2. |
27 |
20 |
20,36 |
1,8 |
1,03 |
|
3. |
26,5 |
20 |
20,30 |
1,5 |
0,98 |
|
pH, (increase) |
1. |
5,4 |
7,4 |
7,56 |
2,2 |
0,36 |
2. |
5,8 |
7,4 |
7,59 |
2,6 |
0,30 |
|
3. |
5,9 |
7,4 |
7,56 |
2,1 |
0,28 |
|
pH, (decrease) |
1. |
9,4 |
7,7 |
7,88 |
2,4 |
0,37 |
2. |
9,2 |
7,4 |
7,57 |
2,3 |
0,47 |
|
3. |
9,7 |
7,4 |
7,57 |
2,3 |
0,55 |
|
DO, (mg/l) |
1. |
4,4 |
7,9 |
14 |
3,1 |
1,8 |
2. |
5,2 |
7,9 |
8,13 |
2,9 |
2,8 |
|
3. |
6,7 |
7,9 |
8,12 |
2,8 |
3,3 |
Analysis of results. Thanks to a comparative analysis of the measurement results of a standard instrument and the measurement results of the designed system, it can be seen that the error between them is very small, and the measurement accuracy meets all standards. After setting the WAN data transmission stability, the data collection terminal worked continuously for 72 hours, and the data transmission was stable. Analysis of the adjustment results can achieve the adjustment of temperature, pH and dissolved oxygen, and the maximum error of its adjustment is 1.9%, 2.6% and 3.1%, respectively. Adjusting the speed and accuracy can meet the needs of the wastewater treatment plant. The water quality results show that the system can adjust and control various water quality parameters, the adjustment speed is faster and more accurate than the manual adjustment method, the stability, accuracy and speed of the control system is better than the traditional manual adjustment method.
References:
- СанПиН РУз № 0318-15. Гигиенические и противоэпидемические требования к охране воды водоёмов на территории Республики Узбекистан (O´zDSt 951-2011)
- D.N. Muxiddinov, N.A. Yunusova, I.A. Daynovov. New methods for obtaining quality drinking water in a water treatment plant. // сhemical technology. Control and management. International scientific and technical journal 2020, №3(93) page. 10-14.
- D.A. Muhammadieva, D.A. Hadjibaev, F.I. Erkabaev. Improving the electrochemical method of wastewater treatment. // Chemical technology. Control and management. International scientific and technical journal 2020, №3(93) page. 14-19.
- M.I. Makhmudov, Z.E. Kuziyev, S.S. Nurov, S.S. Sidikov. Optimal ratio of primary and secondary clarifier characteristics in wastewater treatment plants.//Chemical technology. Control and management. International scientific and technical journal 2020, №4(94) page. 5-9.
- Илюшина В.В. Современные методы очистки сточных вод // Современная техника и технологии. №2. 2017/02/12446.
- Н. Л. Лопаева. Современные технологии очистки сточных вод. // Аграрное образование и наука. 2021. № 3. С. 6
- Денисов Сергей Егорович автоматизация и управление процессом биологической очистки сточных вод // Cyberleninka (cyberleninka.ru)
- Цариковский А.И. вопросы автоматизации для процессов очистки технологических сточных вод // Современные наукоемкие технологии.2007. №6.С.49-50;
- Е. Моисеева Проблемы очистки сточных вод // Cyberleninka (cyberleninka.ru)
- А.Р. Азина, Э.Р. Бариева, Е.В. Серазеева. Усовершенствование технологии очистки сточных вод. // Вестник магистратуры. 2016. № 12-2(63).
- Н.Р.Юсупбеков, А.А.Юсупов. Повышение точности измерения объема жидких продуктов в наклонных горизонтальных цилиндрических резервуарах. Universum: технические науки. 2021. 5(86). 39-43 ст.