докторант, Андижанский машиностроительный институт, Узбекистан, г. Андижан
Модель и алгоритм физико ‒ технических эффектов преобразователя трехфазного тока асинхронного двигателя
DOI: 10.32743/UniTech.2021.85.4-1.33-36
АННОТАЦИЯ
В данной статье представлен алгоритм рационального выбора параметров чувствительного элемента и графической модели физико‒технического эффекта преобразователя трехфазного переменного тока асинхронного двигателя.
ABSTRACT
This article presents an algorithm for the rational choice of the parameters of the sensor element and a graph model of the physical and technical effect of a three-phase alternating current asynchronous motor.
Ключевые слова: асинхронный двигатель, ток статора, преобразователь тока в напряжение, выходное напряжение, чувствительный элемент, физико - технический эффект, система управления.
Keywords: asynchronous motor, stator current, current-to-voltage converter, output voltage, sensing element, physical and technical effect, control system.
Для систем управления асинхронными двигателями и контроля требуется исследование принципов физико‒технических эффектов, лежащих в основе структуры первичного переменного тока, смоделировать элементы преобразования и выходных величин между цепями в виде напряжения преобразования трехфазного переменного тока[1,3,5].
Алгоритм построения модели системы преобразования величин первичных трёхфазных токов в виде напряжения состоит из параметров и принципов преобразования разных видов сигналов физической природы. Данный алгоритм соответсвут принципам управления и контроля асинхронного двигателя [2,6].
При моделировании физико ‒ технических эффектов величин и параметров преобразователя асинхронного двигателя учитывается примененные физико ‒ технические эффекты (ФТЭ) в системе преобразователя, электрические параметры и параметры изменяются, вырабатывается графический модель системы взаимной связи. Первичные токи системы преобразователя асинхронного двигателя и вид модели приведены в рис.1. [3,7].
Рисунок 1. Графический модель процесса преобразования выходных величин первичных токов асинхронного двигателя на напряжение с применением физико ‒ технических эффектов
здесь Uвых.σ ‒ составляющий выходного напряжения; K(Фσ,Uчиқ.σ) ‒коэффициент связи между магнитным потоком и составляющим выходного напряжения преобразователя‒ ФТЭ является основой преобразования; Пσ ‒ параметр сердечника статора асинхронного двигателя; w1 ‒ количество витков обмотки статора; W(Fσ111,Fσ1n1) ‒ функция передачи части магнитного преобразователя.
Математическое выражение для приведённой графической модели между величинами магнитный поток и зависимости преобразователя в виде напряжения определяется на основе по нижеследующему алгоритму:
(1)
Как видно из исследованной величины и процесса преобразования заданных параметров и величин в виде статорного тока на выходную величину вторичного напряжении для построения устройств преобразователя при определении вариантов возможных вариантов управления и контроля необходимо знать, требуются какие виды ФТЭ понадобятся на устройствах преобразования сигналов. А если заданы свойтва процессов преобразования, то есть известны примененные ФТЭ в устройствах преобразователя, то графический модель исследований строится с учётом принципа преобразования преобразователя, взаимосвязи величин и параметров и элементов использованных устройств преобразователя. При этом построение элементов преобразования входных величин на выходные организуются в виде графической модели последовательностью принципов их преобразования [4].
Графичекий модель и аналитический вид процесса образования выходной величины в виде напряжения принимает следующий вид:
(2)
Здесь f - частота сети; wиз- количество витков измерительной обмотки(wиз=1‒2 витков); w1- количество витков в обмотках статора асинхронного двигателя; Lσ1 - индуктивные потерив обмотках статора асинхронного двигателя.
Высокая точность, быстрота, широкие возможности применяемых токовых преобразователей информационно-измерительной системы для контроля и управления реактивной мощности асинхронного двигателя, то есть обеспечение выполнения одного, двух и трёх величин и параметров в течение одинакового времени является основными показателями данного преобразователя.
Высокая чувствительность и высокая скорость преобразования, изоляционное разделение от первичных цепей, эффективность, малые габаритные размеры и вес, низкая себестоимость и так далее - все эти требования ставятся чувствительным элементам преобразователя статорных токов на величину вторичного напряжения асинхронного двигателя. Для обеспечения этих требований чувствительный элемент контроля и управления трёхфазного тока размещается между основными обмотками в пазах и клинами. При этом для того, чтобы получить требуемую нормативную величину вторичного напряжения выбрать рационально необходимое количество статорных пазов, где располается чувствительный элемент и количество чувствительных витков и его алгоритм выполнения приведен в рис. 2.
Как видно из блок-схемы при получении требуемого вторичного напряжения для контроля и управления реактивной мощности асинхронного двигателя вводятся во первых количество статорных пазов и основное количество витков, напряжение сети и максимальной велечины необходимого выходного напряжения. На основе составленного алгоритма определяются за несколько секунд количество витков чувствительного элемента и количество пазов, где располагаются чувствительные элементы.
Рисунок 2. Блок-схема алгоритма рационального выбора количества витков чувствительного элемента и количества пазов, где они располаются: здесь U1 - напряжение сети; w1 - количество витков статорной обмотки; Z1 - количество пазов статора; Uвых - требуемое выходное напряжение; w2- количество витков чувствительного элемента; Z - количество пазов, где располагаются чувствительные элементы
Выполнение чувствительного элемента в дифференциальном виде даст возможность уменьшения ошибок преобразования электрических величин [1].
Вместе с тем возможность получения информации о несимметричности первичных трёхфазных токов асинхронного двигателя и пропадания напряжение какой-то обмотки статора расширит возможности данного преобразователя тока и обеспечивает на выходе нормативной электрической величины (выходное напряжение 5 В). С этим повышается возможности обработки выходного напряжения преобразователя непоредственно микропроцессорными технологиями.
Список литературы:
- И. Х. Сиддиков, Ю. А. Лежнина, И. М. Хонтураев, М. Т. Максудов, А. А. Абдумаликов. Исследование показателей надежности и вероятности работоспособности датчиков контроля и управления энергопотреблением // Инженерно-строительный вестник Прикаспия : научно-технический журнал / Астраханский государственный архитектурно-строительный университет. Астрахань :ГАОУАОВО «АГАСУ», 2020. № 1 (31). С. 74–78.
- Махсудов М.Т., Анарбаев М.А., Сиддиков И.Х. Электромагнитные преобразователи тока для управления источниками реактивной мощности // Universum: Технические науки : электрон.научн. журн. 2019. № 3(60). URL: http://7universum.com/ru/tech/archive/item/7095
- Махсудов М.Т. Установка компенсирующих устройств вблизи потребителей электроэнергии и автоматическая регулировка сетевого напряжения // Universum: технические науки : электрон.научн. журн. 2019. № 9 (66). URL: https://7universum.com/ru/tech/archive/item/7815 (дата обращения: 15.04.2021).
- Сиддиков И. Х., Анарбаев М. А., Махсудов М. Т. Преобразователи сигнала величины тока для систем управления источниками реактивной мощности // Инженерно-строительный вестник Прикаспия : научно-технический журнал / Астраханский государственный архитектурно-строительный университет. Астрахань :ГАОУАОВО «АГАСУ», 2018. № 1 (23). С. 53–56.
- I.Kh.Siddikov, Kh.A,Sattarov., A.B.Abubakirov., M.A.Anarbaev., I.M.Khonturaev., M.Maxsudov. Research of transforming circuits of electromagnets sensor with distributed parameters, 10th International Symposium on intelegent Manufacturing and Service Systems.9-11 September 2019. Sakarya.Turkey. c. 831-837
- I.Kh.Siddikov, M.A.Anarbaev, M.T. Makhsudov. Signal converters of current magnitude for control systems of reactive power sources // Scientific and technical journal "Engineering and Construction Journal of the Prikaspia» (ISSN:2312-3702).http://агасу.рф/journal/isvp/1-23-2018/informacionnye-sistemy-i-texnologii-3
- Siddikov, I.Kh. The Electromagnetic Transducers of Asymmetry of Three-phases Electrical Currents to Voltage / I.Kh. Siddikov // Universal Journal of Electrical and Electronic Engineering. Horizon Research Publishing Corporation USA. – 2015. – Vol.3 (N5). – P.146–148.