PhD Термезского государственного университета, Республика Узбекистан, г. Термез
Синтез и исследование свойства модифицированной серы и серобетона
АННОТАЦИЯ
В статье рассмотрен синтез модифицированной серы на основе кротонового альдегида, а также изучены их состав и структура элементным анализом, ИК-спектрическим и дериватографическим анализом. Установлено, что модифицированный образец показал повышенные свойства, поэтому такую серу можно использовать для большинства строительных изделий.
ABSTRACT
In the article, a modified sulfur based on crotonaldehyde was synthesized, and their composition and structure were studied by elemental analysis, IR-spectral and derivatographic analysis. It was found that the modified sample showed improved properties that they can be used for most building products.
Ключевые слова: сера, модификация, серобетон, зола-унос, отходы ТЭС.
Keywords: sulfur, modification, sulfur concrete, ash waste, TPP waste.
Введение. В мире быстро растет потребление ископаемого топлива, как и количество серы, которая образуется в качестве побочного продукта процесса промышленной очистки. Поскольку ожидается, что в будущем содержание серы будет постоянно увеличиваться, при отсутствии встречного плана потребуются огромные затраты на удаление отходов [3]. В результате было рассмотрено использование серы в качестве строительных материалов, таких как асфальт и бетон. Однако серный бетон, изготовленный из немодифицированной серы, имеет ограничения для практического использования, поскольку у него худшие свойства, такие как плохая водостойкость, и он значительно более хрупкий, чем традиционный бетон. Чтобы преодолеть эти недостатки, нужно модифицировать серу. Серный бетон с использованием модифицированных серосодержащих связующих показывает отличную долговечность при высоких концентрациях кислоты или соли [2].
На сегодняшний день в мире особое внимание уделяется созданию новых модифицированных серных вяжущих, на основе которых серобетон способен длительное время эксплуатироваться в условиях воздействия промышленных, климатических и других видов агрессивных сред, при этом является важной их экологическая безопасность. В промышленно развитых странах разработаны и нашли применение ряд модифицированных серных бетонов на основе непредельных ароматических соединений: на основе этилиденнорборнена и других непредельных органических соединений [1; 4].
Экспериментальная часть. В процессе синтеза использовалась сера из Мубарекского ГПЗ. Использовали кротоновый альдегид производства ООО «Навоиазот». Кротоновая фракция содержит от 57,0 до 67,0 % кротонового альдегида, до 10 % ацетона, до 25 % паральдегида, до 2,0 % ацетальдегида, воду и др. Зола-унос применяли Ангренской ТЭС.
Серу нагревали в стеклянном стакане до 185 °C на термостатированной масляной бане при постоянном перемешивании до образования прозрачной вязкой оранжевой расплавленной фазы серы. Затем непосредственно добавляли кротоновый альдегид к фазе расплавленной серы. Полученную смесь перемешивали при 185–190 °C в течение 60–70 мин, что приводило к некоторому снижению вязкости реакционной среды и получению продуктов черного и желтого цвета для сомономеров кротонового альдегида с серой соответственно. Полученные продукты после завершения были взяты непосредственно из химического стакана с помощью шпателя, и им дали остыть до комнатной температуры. Реакция полимеризации кротонового альдегида с серой показана на схеме 1.
Рисунок 1. Схема синтеза полимерной серы
Полученный сополимер серы нагревали до 180–190 °C в стакане из нержавеющей стали, оборудованном механической мешалкой, в термостатируемой масляной бане до образования расплавленной фазы. К расплавленной среде модифицированной серы добавляли песок, щебень, зола-унос, и полученную смесь дополнительно нагревали при этой температуре с образованием гомогенной примеси бетона при постоянном перемешивании в молярном соотношении 1:3,5 (сополимер полисульфида: песок, щебень, зола-унос). Вязкую смесь помещали в форму собственного изготовления, а затем сразу же помещали в печь, нагретую до 180–190 °C, выдерживали в течение 30 минут, охлаждали до комнатной температуры и осторожно извлекали из формы.
Результаты и их обсуждение. Изготовление модифицированного серобетона включает в себя предварительную обработку присадочных материалов (летучая зола Ангренской ТЭС и мелкозернистый кварцевый агрегат) с кротоновыми фракциями с последующей обработкой элементарной серой для образования раствора полимеризованной серы. Была выбрана следующая пропорция смеси: 44 мас.% – песок, 18 мас.% – летучая зола, 36 мас.% – мелкозернистый кварц и 2 мас.% – органический модификатор (табл. 1). В исследовании летучая зола используется в обычном цементном бетоне для его пуццолановой реакции, которая позволяет уменьшить углеродный след продукта в модифицированном серобетоне (вместе с песком), чтобы обеспечить потенциальные места реакции для полимеризации и в качестве компонента наполнителя в композитматериале. Добавление летучей золы в модифицированный серобетон полезно для повышения консистенции и обрабатываемости смеси благодаря ее круглой форме и подходящему размеру в качестве наполнителя. На стадии предварительной обработки материалы наполнителя и органический модификатор смешивали и нагревали до температуры 170–180 °С в течение 12 часов. Материалы были объединены с элементарной серой и обработаны через мельницу с поперечной мешалкой с размером ячеек 1 мм для уменьшения размера частиц. Затем смесь нагревали и перемешивали в расплавленном состоянии при 135–145 °C в течение 4–6 часов и выливали в формы для охлаждения. Средняя плотность образцов серобетона составляла 2282 (± 41) кг/м3.
Таблица 1.
Рецептура смеси полимерного серобетона
Добавки |
Сера |
Песок |
Летучая зола |
Органический модификатор |
Всего |
мас.% |
36 |
44 |
18 |
2 |
100 |
Были изучены физико-химические свойства: плотность, температура плавления, растворимость, ИК-спектры и ДТГ серобетона. Физико-химические характеристики синтезированной модифицированной серы (сера с кротоновым альдегидом) представлены в табл. 2.
Таблица 2.
Физико-химические показатели модифицированной серы
Показатели |
Модифицированная сера |
Плотность, г/см3 ГОСТ 15139-69 |
2,140 |
Тпл °С |
130 |
Ƞхв |
0,070 |
Растворимость |
Толуол |
Внешний вид и цвет |
Желто-коричневый порошок |
На ИК-спектре модифицированной серы в областях 2358–2345 см–1 имеются полосы поглощения, подтверждающие наличие –СН–S групп, и полосы поглощения в области 1755 см–1, подтверждающие наличие в свободном состоянии –С=О группы. ИК-спектр содержит полосы поглощения в области 3400 см–1, соответствующие –ОH группам. Деформационные колебания всех активных групп проявляются в виде сильных узких полос между обычными полосами деформационных колебаний –СН–О– в области 1400–1465 см–1. Наличие групп, содержащих серу S=О и S–H в области 2345–2368 см–1, подтверждает широкая интенсивная полоса серосодержащих соединений в областях 1200–1100 см–1, 1040–1060 см–1.
Рисунок 2. ИК-спектр модифицированной серы
Кроме того, на ИК-спектроскопии в областях 1060 см–1 и 1015 см–1 появляются узкие малоинтенсивные полосы, содержащие связи серосодержащего соединения. При рассмотрении ИК-спектров модифицированной серы видны интенсивные –СН2–О группы с показателями диммера 1400–1440см–1 (рис. 2).
Рисунок 3. ТГА анализ модифицированной серы
Таблица 3.
Данные термогравиметрического анализа модифицированной серы
№ |
Температура, °С |
Потеря массы, мг (73) |
Потеря массы, % |
Количество расходованной энергии (µV*s/mg) |
1 |
100 |
72,62 |
0,52 |
0 |
2 |
200 |
72,57 |
0,43 |
6,91 |
3 |
300 |
70,01 |
4,09 |
3,89 |
4 |
400 |
55,1 |
24,09 |
3,99 |
5 |
500 |
52,2 |
5,08 |
4,13 |
6 |
600 |
51,5 |
0,36 |
4,97 |
7 |
700 |
50,04 |
0,10 |
6,70 |
8 |
800 |
49,90 |
0,13 |
4,32 |
9 |
900 |
48,5 |
0,75 |
5,32 |
10 |
1000 |
47,3 |
0,66 |
5,36 |
11 |
1100 |
45,1 |
0,31 |
3,35 |
12 |
1200 |
44,9 |
0,84 |
4,36 |
Термические свойства модифицированной серы исследовались на дериватографе. Масса образца модифицированной серы не меняется до 207 °С. На кривой ДТГ в температурном диапазоне 100–120 °С наблюдается один эндотермический пик (при 114,7 °С), что соответствует плавлению образца (рис. 2). Полученные данные в табл. 3 показывают, что выше температуры 307 °С образец начинает разлагаться в два этапа – до 365 °С со скоростью 6 %/мин, и выше 500 °С со скоростью 2,5 %/мин, с общей потерей массы 84 %. Реакция разложения эндотермическая, общая энергия разложения – 304,7 Дж/г.
С помощью электронной микроскопии олигомеров можно определить структурирование и количество элементов, содержащихся в модифицированных соединениях. При испытании образец сначала был закреплен в держатель, после чего образец покрыли до 5 нм золотым порошком. Для покрытия поверхности образца золотым порошком был использован прибор QUORUM Q150 RS.
Исследована микроструктура образца модифицированного серного бетона методом сканирующей электронной микроскопии.
Рисунок 4. Микрофотография серного бетона |
Рисунок 5. Данные элементного анализа серного бетона |
Подготовку образцов серобетона для исследования микроструктуры проводили по разработанной методике. На поверхность модифицированного серного бетона в вакуумной установке для ионного напыления наносили слой золота толщиной 5 нм. Металлизированные золотом образцы исследовали в сканирующем электронном микроскопе QUORUM Q150 RS в режиме вторичных электронов. Результаты микроструктурных исследований приведены на рис. 3. На рис. 3 можно видеть, что при добавке 5 г кротонового альдегида на 100 г серы существенно увеличиваются размеры частиц дисперсной фазы с 0,1 до 0,5 мкм, в то время как при добавлении 3 г кротонового альдегида на те же 100 г серы подобного эффекта не наблюдается. Если же кротоновый альдегид добавлять в пластифицированную полимерную серу, то значительное увеличение размеров дисперсной фазы происходит прямо пропорционально повышению содержания модифицирующей добавки.
На рис. 4 показано процентное соотношение углерода, кислорода, серы, кремния, азота, натрия и алюминия в составе серобетона.
На ИК-спектре серного бетона в областях 2850–1470 см–1 имеются полосы поглощения, подтверждающие наличие –СН2– групп, и полосы поглощения в области 1650 см–1, подтверждающие наличие в свободном состоянии –СО– группы. ИК-спектр содержит полосы поглощения в области 3400 см–1, соответствующие первичным –СО группам. Деформационные колебания всех активных групп проявляются в виде сильных узких полос между обычными полосами деформационных колебаний –СН2–СО– в области 1400–1405 см–1. Наличие групп, содержащих S=О и S–С в области 1050–1015 см–1, подтверждает широкая интенсивная полоса и серосодержащие соединения в областях 462–779 см–1, 1040–1060 см–1 и 1100–900 см–1.
Рисунок 6. ИК-спектр модифицированного серного бетона
Кроме того, на ИК-спектрах в областях 648–779 см–1 и 1460 см–1 появляются узкие малоинтенсивные полосы, содержащие связи серосодержащих соединений. При рассмотрении ИК-спектров серобетон отличается от модифицированной серы сильной интенсивной –СН2–S– группой с показателями диммера 1400–1440 см–1 (рис. 5.).
Рисунок 7. ДТГ и ТГ анализ серного бетона
Проводили исследование по изучению термической устойчивости серного бетона методом дифференциально-термогравиметрического анализа. Масса серного бетона не меняется до 216 °С (рис. 6 и табл. 4). На кривой ДТГ в температурном диапазоне 120–380 °С наблюдаются два эндотермических пика, что соответствует двум фазовым переходам (структурным перестройкам) и плавлению образца. Выше температуры 400 °С образец начинает разлагаться в два этапа – до 275 °С со скоростью 5 %/мин, потерей массы 3,10 %, и выше 280 °С со скоростью 19,5 %/мин. Первый этап разложения – экзотермический (энергия 4.99 µV*s/mg), второй – эндотермический (энергия – 28,3 J/g) (рис. 6).
Таблица 4.
Данные термогравиметрического анализа модифицированного серного бетона
№ |
Температура, °С |
Потеря массы, мг (81) |
Потеря массы, % |
Количество расходованной энергии (µV*s/mg) |
1 |
100 |
80,69 |
0,30 |
2,34 |
2 |
200 |
80,50 |
0,49 |
5,81 |
3 |
300 |
78,45 |
3,10 |
4,99 |
4 |
400 |
65,14 |
19,5 |
3,79 |
5 |
500 |
58,20 |
8,90 |
4,23 |
6 |
600 |
58,10 |
0,07 |
5,67 |
7 |
700 |
57,90 |
0,46 |
4,50 |
8 |
800 |
55,30 |
3,35 |
6,42 |
9 |
900 |
54,40 |
0,94 |
3,62 |
10 |
1000 |
54,00 |
0,50 |
5,46 |
11 |
1100 |
53,70 |
0,90 |
4,65 |
12 |
1200 |
53,10 |
0,40 |
3,56 |
Заключение. Таким образом, установлено, что модифицированная сера с кротоновой фракцией при высокой температуре обладает удовлетворительной связывающей способностью удерживать зольную пыль и мелкий наполнитель. Термогравиметрические свойства модифицированного образца показали повышенные свойства, поэтому их можно использовать для большинства строительных изделий.
Эксперименты дифференциально-термогравиметрического анализа указывают на снижение эндотермической реакции Sn и, следовательно, успешной реакции полимеризации.
Список литературы:
- Бекназаров Х.С., Тураев Х.Х., Аманова Н.Д. Синтез и исследование нового полимерного серобетона // Universum: технические науки: электрон. научн. журн. – 2020. – № 6 (75) / [Электронный ресурс]. – Режим доступа: https://7universum.com/ru/tech/archive/item/9598.
- Стоянов С.О. Технологическая линия по производству серных и других гомогенных композиций / О.В. Стоянов, Н.К. Нуриев // Вестник Казан. технол. ун-та. – 2010. – Т. 16. – № 14. – С. 47–49.
- Хамидуллин Ф.А. Технология получения серополимерного цемента / Ф.А. Хамидуллин, В.И. Гайнуллин // Вестник Казан. технол. ун-та. – 2012. – Т. 17. – № 1. – С. 148–149.
- Książek M. The experimental and innovative research on usability of sulphur polymer composite for corrosion protection of reinforcing steel and concrete // Composites Part B: Engineering. – 2011. – Vol. 42. – Issue 5. – P. 1084–1096.