Международный
научный журнал

Метод конформного склеивания при решении задачи Газемана для бианалитических функций


The method of conformal pasting in the performance of Hazeman’s task for bianalytical functions

Цитировать:
Володченков А.М., Юденков А.В. Метод конформного склеивания при решении задачи Газемана для бианалитических функций // Universum: Технические науки : электрон. научн. журн. 2015. № 11(22). URL: http://7universum.com/ru/tech/archive/item/2765 (дата обращения: 22.09.2019).
 
Прочитать статью:

Keywords: conformal mapping, bianalytical function

АННОТАЦИЯ

Задача Газемана является основной двухсторонней краевой задачей теории функции комплексного переменного. Наиболее исследована задача Газемана для кусочно-аналитических функций. Одним из эффективных методов её решения является метод конформного склеивания, позволяющий с помощью подбора специального контура убрать сдвиг в краевых условиях.

В данной работе задача Газемана рассматривается на более широком классе функций – бианалитических функций. Бианалитические функции являются прямым обобщением аналитических и используются в задачах теории упругости для определения комплексного потенциала.

Общей проблемой, возникающей при решении краевых задач для бианалитических функций, является наличие в краевых условиях неаналитических элементов. Это приводит к тому, что бианалитическая функция не является инвариантной относительно конформных отображений. Поэтому непосредственно применить метод конформного склеивания к решению задачи Газемана для бианалитических функций нельзя.

Тем не менее в работе получен метод, аналогичный методу конформного склеивания, позволяющий свести задачу со сдвигом для бианалитических функций к задаче без сдвига для аналитического вектора. Также в работе получен общий алгоритм решения краевой задачи Газемана для бианалитических функций для областей сложной формы.

ABSTRACT

Hazeman’s task is the main bilateral boundary value problem of the functions theory of a complex variable. Hazeman’s task for piecewise-analytic functions is mostly studied. One of the effective methods of solving it is the method of conformal pasting that enables the selection of a special circuit to remove a shift in the boundary conditions.

In the article the Hazeman’s problem is considered on a wider class of functions – bianalytical functions. Bianalytical functions are a direct generalization and analysis used in the theory of elasticity to determine the complex potential.

A common problem arising in the solution of boundary value problems for bianalytical functions is the presence in the boundary conditions of non-analytic elements. It leads to the fact that bianalytical function is not invariant with respect to conformal mappings. So application of the method of conformal pasting to Hazeman’s problem for bianalytical functions is impossible.

Nevertheless, the obtained method similar to the method of conformal pasting allows reducing the problem with shift for bianalytical functions to the problem without a shift for analytic vector. Also, a general algorithm for solving boundary value problems for Hazeman’s bianalytical functions for the areas of complex shape is obtained in the article. 

 


Список литературы:

 1. Володченков А.М., Юденков А.В. Моделирование основных задач плоской теории упругости однородных анизотропных тел краевыми задачами со сдвигом // Обозрение прикладной и промышленной математики. – 2006. – № 3. – С. 482–484.

2. Володченков А.М., Юденков А.В. Об одном методе решения первой основной задачи теории упругости для однородного анизотропного тела // Universum: Технические науки : электрон. научн. журн. – 2015. – № 6 (18) / [Электронный ресурс]. – Режим доступа: URL: http://7universum.com/ru/tech/archive/item/2247 (дата обращения: 10.11.2015).
3. Гахов Ф.Д. Краевые задачи. – М: Наука, 1977. – 640 с.
4. Лехницкий Г.С. Теория упругости анизотропного тела. – М.: Наука, 1977.
5. Юденков А.В. Краевые задачи со сдвигом для полианалитических функций и их приложения к вопросам статической теории упругости. –Смоленск: «Смядынь», 2002. – 268 с.

 


References:

 1. Volodchenkov A.M., Iudenkov A.V. Simulation of the main problems of the plane theory of elasticity of anisotropic bodies by inhomogeneous boundary value problems with a shift. Obozrenie prikladnoi i promyshlennoi matematiki. [Review of applied and industrial mathematics], 2006, no. 3, pp. 482–484 (In Russian).

2. Volodchenkov A.M., Iudenkov A.V. A method for solving the first major problem of elasticity for a homogeneous anisotropic body. Universum: Tekhnicheskie nauki : elektron. nauchn. zhurn. – 2015. – № 6 (18). [Universum: Technical Sciences: the electronic scientific journal, 2015, no. 6 (18)]. Available at: http://7universum.com/ru/tech/archive/item/2247 (accessed: 10 November 2015).
3. Gakhov F.D. Boundary value problems. Moscow, Nauka Publ., 1977. 640 p. (In Russian).
4. Lekhnitskii G.S. The theory of elasticity of an anisotropic body. Moscow, Nauka Publ., 1977. (In Russian).
5. Iudenkov A.V. Boundary-value problems with a shift for poly-analytic functions and their application to issues of static elasticity theory. Smolensk, “Smiadyn'” Publ., 2002. 268 p. (In Russian).

 


Информация об авторах:

Володченков Александр Михайлович Volodchenkov Aleksandr

канд. физ.-мат .наук, ФГБОУ ВПО «Смоленский филиал «РЭУ им. Г.В. Плеханова», 214030, Российская Федерация, Смоленская область, г. Смоленск, ул. Нормандия-Неман, д. 21

Candidate of Physical and Mathematical Sciences, FSBEI HPE “Smolensk branch “Plekhanov Russian University of Economics”, 214030, Russia, Smolensk region, Smolensk, Normandie-Niemen str., 21


Юденков Алексей Витальевич Yudenkov Aleksey

доктор физ.-мат .наук, профессор, ФГБОУ ВПО «Смоленская ГСХА», 214000, Российская Федерация, Смоленская область, г. Смоленск, улица Большая Советская, дом 10/2

Doctor of Physical and Mathematical Sciences, Professor, FSBEI HPE “Smolensk State Agricultural Academy”, 214000, Russia, Smolensk region, Smolensk, Bolshaya Sovetskaya str., 10/2


Читателям

Информация о журнале

Выходит с 2013 года

ISSN: 2311-5122

Св-во о регистрации СМИ: 

ЭЛ №ФС77-54434 от 17.06.2013

ПИ №ФС77-66236 от 01.07.2016

Скачать информационное письмо

Включен в перечень ВАК Республики Узбекистан

Размещается в: 

doi:

The agreement with the Russian SCI:

cyberleninka

google scholar

Ulrich's Periodicals Directory

socionet

Base

 

OpenAirediscovery

CiteFactor

Поделиться

Лицензия Creative CommonsЯндекс.Метрика© Научные журналы Universum, 2013-2019
Это произведение доступно по лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Непортированная.