EQUIPMENT FOR STUDYING IMPURITIES IN THE CONTENT OF COTTON RAW MATERIALS AND ITS PURIFICATION

ОБОРУДОВАНИЕ ДЛЯ ИЗУЧЕНИЯ ПРИМЕСЕЙ В СОДЕРЖАНИИ ХЛОПКОВОГО СЫРЬЯ И ЕГО ОЧИСТКИ
Цитировать:
Djamolov R.K., Abdullayev K.Yu., Boysariyev A.B. EQUIPMENT FOR STUDYING IMPURITIES IN THE CONTENT OF COTTON RAW MATERIALS AND ITS PURIFICATION // Universum: технические науки : электрон. научн. журн. 2024. 2(119). URL: https://7universum.com/ru/tech/archive/item/16894 (дата обращения: 03.05.2024).
Прочитать статью:
DOI - 10.32743/UniTech.2024.119.2.16894

 

ABSTRACT

The article studied the change in passive and active impurities in cotton raw materials during cotton ginning, in which the amount of passive impurities was close to the amount of active impurities at the time of cotton production, and also determined the increase in active impurities. Due to the concentration of impurities and their penetration into cotton fibers. Cleaning equipment adapted to the operation of the PL conveyor has been offered since the days of cotton harvesting.

АННОТАЦИЯ

В статье изучено изменение пассивных и активных примесей в хлопковом сырье при хлопко очистке, в которой количество пассивных примесей приближалось к количеству активных примесей во время производства хлопка, а также определено увеличение количества активных примесей.

 

Keywords: Transporter, PL, small impurities, active, passive, heat, density, cleaning.

Ключевые слова: Транспортер, ФЛ, мелкие примеси, активный, пассивный, теплота, плотность, очистка.

 

Pre-cleaning cotton before ginning helps prevent quality deterioration during long-term storage of cotton, since moisture contained in impurities can stick to the cotton fiber, increase the moisture content of the fiber and heat up on its own, and small impurities can stick to the cotton. can penetrate deeper into the fiber of dense cotton over time and can affect the quality of the fiber product, making the next step more difficult to clean. [1-3].

When ginning, it is possible to preserve the quality indicators of the produced fibrous product by preparing it for storage, mainly by making minor changes in the design of the receiving and transmitting devices of the CHP and PL, and preliminary cleaning is cotton possible.

When improving the designs of cotton receiving transmitting devices, mainly G.A. Tikhomirov, Sh.A. Alekperov, S. Musaev, A.N. Nuraliev, V.A. Weber, A.D. Sapon, E. Kh Rakhimov, despite the fact that some successes have been achieved by others, cleaning cotton from small stones and impurities before ginning has not been fully implemented.

N. Karimov, R. Murodov, Kh. Akhmedkhodjaev [2] studied the release of passively weakly bound foreign impurities in cotton sent to a cotton gin plant, without installing additional cleaning devices. To do this, when raw cotton passed along an inclined conveyor, a mesh with holes was installed in the head of the device and impurities were collected in the hopper, but during the movement of the cotton, under the influence of aerodynamic processes, the release of small impurities and re-addition to cotton were not taken into account.

In further works by L. Khabibulaev and Kh. T. Akhmedkhodzhaev [3], it was proposed to install a fan and suck out dirt from the chamber.

Before ginning, an inclined cleaning section consisting of stacked drums [4] and hanging sections [5] was proposed to clean fine impurities in cotton, but the productivity of the device was not taken into account, although stacked drums were also used in cotton growing. a lot of work.

G. Kataev [6], in order to increase the productivity of the equipment, prepared an additional belt conveyor-supporting platform - TP - for the existing PLA-type receiving device. But this device, which has large overall dimensions with a driver, is inconvenient to maintain and is not widely used in production.

Sh. Alekperov [7] investigated the reliability of a belt conveyor when receiving cotton by installing a roller platform on the device. The disadvantages of the known design are insufficient reliability under overloads and the dependence of the speed modes of the rollers on the permeability of cotton raw materials on the belt conveyor is not taken into account, resulting in the need for constant adjustment of the belt conveyor. In addition, the roller platform of the board can only clean the dirt on the surface of the cotton wool.

T. N. Korobelnikova [8] developed an improved copy of the receiving and reloading device for cotton raw materials in the horizontal part, using a roller table-roller platform and changing the order of placement of piles on an inclined belt in the process of holding cotton with piles. From a theoretical point of view, the movement of wool along the surface of the platform depends on the thickness of the mass falling on it, based on the possibility of not pulling pieces of wool between the rollers, a mathematical model for determining the diameters. Rollers have been developed and improved, based on their indicators, theoretical dependencies have been constructed that determine the design parameters of the rollers, wall thickness pipes.

Cleaning cotton from passive impurities at the time of receipt leads to the preservation of its quality in warehouses. We know that the dense nature of cotton fibers makes it difficult for passive impurities to move in and out between the fibers and they become active impurities [9-11].

On September 15, passive and active impurities in cotton obtained at the preparatory site of the Muzrabod cotton ginning enterprise in Surkhandarya region were studied. When receiving the selection variety Bukhara-102 I-II- from the PL conveyor, cotton of III-IV industrial grade, 2nd class was selected according to the requirements of the standard [12-16], samples were taken and the amount of active and passive impurities was examined (Table 1).

Table 1.

Analysis of the amount of passive and active impurities in the received cotton (September 15)

 

Industrial grades

Initial humidity, %

Amount of impurities, %

Average, %

General dirt, %

1

2

3

Passive

Active

Passive

Active

Passive

Active

Passive

Active

I/2

9,2

2,2

5,1

2,5

4,9

2,3

5,1

2,3

5,0

7,3

II/2

9,5

3,4

5,0

3,2

5,3

3,2

5,2

3,2

5,1

8,3

III/2

11,0

3,8

5,7

3,9

5,9

3,8

5,8

3,8

5,8

9,6

IV/2

13,2

4,2

6,2

4,0

6,1

4,5

5,4

4,2

5,9

10,1

 

To determine passive impurities, 300-gram samples were taken and the amount of released impurities was weighed by manual shaking. Impurities detected by shaking were included in the composition of passive impurities, and impurities detected by LKM equipment were included in active impurities.

Continuing experiments on changing impurities when storing cotton in a warehouse, on November 10, cotton samples were taken and analyzed from the above warehouses. To determine the impurities of stored cotton, samples were taken from different places in the cave at a depth of 50-60 cm and analyzed (Table 2).

Table 2.

Analysis of the amount of passive and active impurities in the received cotton (November 10)

Industrial grades

Initial humidity, %

Amount of impurities, %

Average, %

General dirt, %

1

2

3

Passive

Active

Passive

Active

Passive

Active

Passive

Active

I/2

8,6

0,62

6,1

0,91

5,9

0,93

5,8

0,82

5,9

6,72

II/2

9,2

0,98

6,55

0,89

6,6

1,0

6,5

0,95

6,55

7,5

III/2

10,5

1,0

8,5

1,3

7,8

1,2

8,2

1,2

8,2

9,4

IV/2

12,6

1,2

8,3

1,6

8,0

1,4

8,2

1,4

8,2

9,6

 

From the table above it can be seen that the amount of passive impurities at the time of cotton production in each industrial grade is closer to the amount of active impurities.

From the analysis of the above table, it can be seen that when storing cotton, passive pollution becomes active pollution. Because the dirt stuck to the surface of the cotton fiber due to the condensation of the cotton in the garam penetrates into the fiber and makes the cleaning process difficult.

In order to reduce these disadvantages, an equipment scheme with a roller mechanism for preliminary cleaning of small stones and passive dirt in cotton was developed, corresponding to the performance of cotton receiving and transmitting devices HPP, PL. Fig.1

 

Figure 1. Inlet block with recommended cleaner

 

In the transfer device for receiving cotton, under the head of the inclined conveyor, there is a platform with rollers for removing small stones and impurities from the cotton, the distance between them is b mm, and their linear speed is higher than the speed of the conveyor. V belt to even out the cotton hitting the rollers and it will increase in each roller. To carry out shaking when moving the cotton platform, the stages of placing the rollers are established if the distance h varies in height.

The device consists of a wheel 1, a horizontal belt conveyor 2, a cotton hopper 3, an inclined conveyor 4, a cleaning mechanism consisting of rollers 5, a waste discharge auger 6, and the device operates as follows.: after the raw cotton is thrown onto the horizontal belt conveyor 2 of the receiving and transmitting device, it is transferred from it to the inclined conveyor 4, where the cotton is suspended using peg boards and transferred to the cleaning mechanism 5, consisting of a windrow. The cotton is shaken from the location of the rollers in steps at a distance h, and due to the successive increase in the rotation speed in the direction of the rollers, the shaking process in the cotton intensifies and its layer decreases compared to the original one. cotton transmission, which improves the separation of small stones and dirt between them.

Small stones and impurities spilled between the rollers are collected in waste bin 6 and removed by an auger. Then the cleaned cotton is transferred to the 7 conveyor belt.

From the above analysis, it became clear that cleaning cotton from impurities during cotton ginning allows you to reduce the amount of active impurities and improve the quality of cotton storage, as well as reduce the effort applied to the units during cleaning, as well as reduce the number of cleaning working bodies.

 

References:

  1. Отчет ТИТЛП, Тема № 16/82,«Исследование вопросов и разработка обеспечения сохранности качества хлопка-сырца при складировании и хранении», Ташкент, 1984 г.
  2. Н.Каримов, Р.Муродов, Х.Ахмедходжаев. Исследование процесса выделения сорных примесей при приемке хлопка-сырца. //Хлопковая промышленность, №2. 1986 г., с.11.
  3. Л.Хабибулаев, Х.Т.Ахмедходжаев, Модернизация ленточного питателя ХПП с целью очистки хлопка-сырца перед бунтованием. «Хлопковая промышленность» реферативный научно-технический сборник, 1988 г., №2, с.15.
  4. Справка «О результатах ознакомления с техникой и технологией переработки хлопка-сырца в США. Ташкент – 1989.
  5. Гуляев Р.А., Лугачев А.Е., Усманов Х.С. Современное состояние производства, переработки, потребления и качества хлопковой продукции в ведущих хлопкосеющих странах мира. Монография: «Paxtasanoat ilmiy markazi» AJ, Ташкент 2017, с.171.
  6. Г.Катаев «Хлопковая промышленность» реферативный научно-технический сборник, 1978 г., № 3,с.26.
  7. Ш. Алакбаров. Перегружатель хлопка передвижной марки ХПП. «Хлопковая промышленность» реферативный научно-технический сборник, 1978 г., №6, с.19.
  8. Т.Н.Коробельникова. Разработка и обоснование параметров приёмоподающего устройства хлопка-сырца. Автореферат дисс.д.ф.(PhD) по техническим наукам. Ташкент 2022 г. С.20.
  9. O’zDSt 643:2006 Пахта. Намуна танлаб олиш усуллари.
  10. Жураев Д.А., Урозов М.К., Янгибоев Р.М. CОВЕРШЕНСТВОВАНИЕ ПРЯДИЛЬНО-ОЧИСТИТЕЛЬНОГО УЗЛА ШЕРСТЯНОГО ВОЛОКНА // Universum: технические науки : электрон. научн. журн. 2023. 7(112). URL: https://7universum.com/ru/tech/archive/item/15725
  11. Жўраев, Д. А., М. К. Урозов, and Р. Янгибоев. "Усовершенствование узла сортировки и очистки шерстяного волокна." UNIVERSUM-тенические науки (2023).
  12. Қаршиев Б.Э., Пaрпиев A.П. Пахта ва уни компонентларини қатламда қуритиш тадқиқоти. // ЎзМУ хабарлари. Илмий журнал. ISSN 2181-7324. № 3/2, 2022, 432-434 б.
  13. Bakhtiyor Karshiev, Azimjon Parpiev, Ilkhom Sabirov, Kamoliddin Yakubov, Ibrokhim Ismoilov. The effect of drum drying temperature on the moisture of cotton components//ANNALS OF FOREST RESEARCH ,Ann. For. Res. 65(1): 1935-1942, 2022 ISSN: 18448135, 20652445 https://www.e-afr.org/article/view/1935.html#cite-area.
  14. Каршиев Б.Э., Парпиев А.П., Хушбаков А.Н. Анализ температуры, влажности волокна и семян в технологических процессах на хлопкоочистительных предприятиях// INTERNATIONAL SCIENTIFIC AND PRACTICAL CONFERENCE: YOUTH, SCIENCE, EDUCATION: TOPICAL ISSUES, ACHIEVEMENTS AND INNOVATIONS, 2022 Prague, Czech. https://doi.org/10.5281/zenodo.7117865.
  15. Каршиев Б.Э., Парпиев А.П., Абдуллаев Х.И. Исмоилов И.Д.  Пахтани тозалашга тайёрлаш технологиясининг таҳлили// RESULTS  OF NATIONAL SCIENTIFIC RESEARCH. VOLUME 1.  Issue 6 2022 SJIF- 4.431 ISSN: 2181-3639. https://doi.org/10.5281/zenodo.7182657.
  16. Каршиев Б.Э., Парпиев А.П. Равномерность сушки компонентов хлопка-сырца // Universum: технические науки. – 2022. – №. 9-2 (102). – С. 51-54.
Информация об авторах

Doctor of Technical Sciences, Department “Drying, cleaning and production of cotton dedusting”, Republic of Uzbekistan, Tashkent

д-р техн. наук, Отдел «Сушка, очистка и производство хлопка обеспыливание», Республика Узбекистан, г. Ташкент

Teacher, Termez Institute of Engineering and Technology, Republic of Uzbekistan, Termez

преподаватель, Термезский инженерно-технологическом институт, Республика Узбекистан, г. Термез

Teacher Termez Institute of Engineering and Technology, Republic of Uzbekistan, Termez

преподаватель, Термезский инженерно-технологическом институт, Республика Узбекистан, г. Термез

Журнал зарегистрирован Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор), регистрационный номер ЭЛ №ФС77-54434 от 17.06.2013
Учредитель журнала - ООО «МЦНО»
Главный редактор - Ахметов Сайранбек Махсутович.
Top